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River hydrodynamics are influenced by numerous factors that traditional models often fail to fully 
capture. Simulating complex hydrographs can benefit from parsimonious upscaling models, such as 
fractional derivative equations, that reduce the need to account for all variables. While fractional Saint-
Venant equations (SVEs) have been mathematically explored, they lack clear physical interpretation 
and have not been applied in practical scenarios. This study introduces novel fractional-order Saint-
Venant equations (FSVEs) for simulating river flow dynamics, addressing limitations in conventional 
modeling. Three models—constant, tempered, and variable time-fractional SVEs (CtFSVE, TtFSVE, 
and VtFSVE)—are developed to capture peak attenuation and tailing more effectively. Numerical 
experiments indicate that lower time-fractional derivative values enhance retention, producing a 
lower peak, delayed peak arrival, and pronounced late-time tailing. TtFSVE models transient tailing 
in hydrographs, VtFSVE captures transient evolution where inflow and outflow differ, and CtFSVE 
balances accuracy and simplicity with a single added parameter for various hydrographs. In the 
simulation of real-world hydrograph data, the fractional SVEs show high predictive accuracy. However, 
they should be regarded as effective proxy models that require parameter calibration and are not 
yet fully ‘plug-and-play’ predictive models. Comparative analysis with the Long Short-Term Memory 
(LSTM) machine learning model and distributed domain coupling model (DDCM) shows CtFSVE’s 
superior performance in capturing complex flow dynamics with minimal data, while field validation 
demonstrates its accuracy over traditional SVE, underscoring its practicality for complex river 
networks. The fractional engine shows promise as an effective tool for upscaling surface flow without 
the prohibitive burden of mapping detailed system heterogeneity.
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A river system is inherently intricate and subject to a multitude of environmental influences, including hydrologic 
exchange, heterogeneity within the riparian zone, and variations in riverbed morphology. These factors can 
significantly alter both the shape and magnitude of the hydrograph1–8. The impact of temporal variations in river 
systems also warrants consideration when dissecting detailed hydrograph kinetics. For instance, water erosion 
leads to modifications in the characteristics of the river channel, while hydrologic exchange flows have the 
potential to remove sediment from the riparian zone, consequently altering the permeability and pore structure 
of the riverbank and ultimately impacting the hydrograph9,10. Nonetheless, these physical and hydrological 
factors/properties, which may undergo spatiotemporal evolutions, might not be comprehensively captured by 
process-based models. Therefore, constructing parsimonious flow models with fewer effective parameters is 
useful for simulating complex hydrographs across a wide range of physical and hydrological scenarios. This 
motivation serves as the driving force behind this study.
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Our previous work8 introduced a physically based, Distributed Domain Coupling Model (DDCM) to capture 
the impact of hydrologic exchange on hydrographs. The findings indicated that hydrologic exchange led to a 
reduction in peak discharge and altered the late-time tail of the hydrograph from an exponential decline to 
a power-law decline. This hydrologic exchange primarily stemmed from the hydraulic conductivity and 
heterogeneity of the riparian zone. Nevertheless, to comprehensively elucidate the influence of other key factors 
on hydrographs, it becomes necessary to incorporate the corresponding physical and/or hydrodynamic processes 
into the DDCM. However, this task is intricate within the current formulation of the model (outlined in Sect. 
2). As the model’s complexity grows, the number of empirical parameters escalates, potentially impinging on 
the model’s computational efficiency and parameter estimation. Hence, we redirect our focus to an alternative 
avenue: the promising fractional phenomenological models, elaborated upon below.

The fractional derivative, functioning as a convolution operator, proves instrumental in capturing memory 
and retardation effects within intricate systems on physical quantities11,12. This concept has found successful 
applications across diverse domains, encompassing hydrodynamic processes in water flow13, anomalous 
pollutant transport14–16, and viscoelastic diffusion in complex media17. Empirical and numerical investigations 
have further substantiated those fractional derivative models, characterized by fewer parameters, adeptly 
portray heavy-tailed behavior and history dependence in a broad array of scenarios than conventional models, 
including the classical 2nd -order advection-dispersion Eqs18,19. Initially, as the application of fractional 
derivative models gained prominence in practical problem-solving, scholars predominantly employed constant-
order fractional derivatives11,18,20,21. Deeper exploration, however, revealed that soil heterogeneity can instigate 
solute and moisture tailing phenomena that deviate from pure power-law attenuation. This deviation challenges 
accurate characterization by standard, constant-index fractional-order derivative models15,19,22. To address this 
challenge, tempered fractional-order derivative models emerged to capture the transition of long-time tails (as 
seen in tracer breakthrough curves) from power-law decay to exponential decay16,22,23. Moreover, it became 
evident that the efficacy of constant-order fractional derivative models declines when the system’s properties 
evolve with time and/or space. As a remedy, the concept of variable-order fractional derivatives was introduced, 
leading to the successful application of variable-order fractional derivative models in describing such anomalous 
phenomena24–26.

Only a few studies have specifically addressed the fractional Saint-Venant equation (FSVE), a promising 
model for simulating complex open channel flow. Mercado et al.27 first introduced FSVE by linking Navier-
Stokes equations with hydraulic formulas, exploring how fractional calculus models non-local and fractal 
interactions in hydraulic flows. They highlighted the role of the friction factor as a fractional derivative operator. 
Kavvas and Ercan28 expanded on this by developing time-space FSVEs for unsteady open channel flows, showing 
how fractional derivatives model long-wave propagation and non-local flow behaviors. Kavvas and Ercan29 
refined their approach, adding physically interpretable hydraulic terms and addressing dimensional consistency. 
Telyakovskiy et al.30 improved the mathematical rigor of these equations, particularly in the use of fractional 
Taylor series. Ercan and Kavvas31 provided numerical validation, demonstrating the accuracy of fractional 
models in capturing nonlocal effects. Alarifi and Ibrahim32 extended the FSVE to two dimensions, applying 
the complex Prabhakar operator to study more intricate geometric behaviors. Despite these advancements, 
four main limitations remain: (i) There is no consensus on the different forms that a FSVE can take; (ii) The 
hydrogeologic mechanisms behind fractional behavior in fluid systems are not explored; (iii) Theoretical models 
lack real-world validation; and (iv) Simplified assumptions, such as straight channels, limit applicability to more 
complex hydrological systems. This study addresses these limitations by proposing multiple FSVE forms, testing 
their real-world applicability, and exploring physical implications. For simplicity, the assumption of constant 
channel geometry is retained for the numerical tests, while space-dependent channel properties (e.g., width and 
slope) are discussed in the appendix and integrated into the field application in this study.

In summary, fractional derivative models are adept at accurately capturing complex tailing phenomena 
with a few parameters, but current research into the specific connections between fractional derivatives and 
actual physical quantities is not yet comprehensive. Therefore, first, this study aims to develop three novel time-
fractional derivative Saint-Venant equations to characterize flow processes in rivers (Sect. 2). Previous studies on 
fractional-order Saint-Venant equations, such as Mercado et al.27, established a fractional modeling framework 
by modifying Darcy’s law and Newton’s second law, using a fractional friction factor linked to mean flow velocity, 
characteristic length scales, and Reynolds number. Kavvas and Ercan28,29 derived space–time fractional-
order Saint-Venant equations using fractional Taylor series expansions. Their numerical simulations revealed 
discrepancies between inflow and outflow, and these models were not applied to real-world field cases. In contrast, 
the present study systematically develops and evaluates three time-fractional Saint-Venant formulations—
based on constant-order, variable-order, and tempered-order Caputo derivatives—within a unified modeling 
framework. Importantly, we validate these formulations using both synthetic benchmarks and field hydrographs 
from real river basins, marking the first known application of fractional SVEs to observed streamflow data. 
Secondly, a comparative analysis was conducted between FSVEs and a physical-based model (DDCM) to explore 
the relationship between fractional derivative model parameters (including fractional derivatives and truncation 
coefficients) and actual physical quantities (Sect. 3). Finally, real-world flow data verified the effectiveness of the 
proposed fractional derivative models, which were also compared with popular machine learning models (Sect. 
4). Section 5 summarizes the main conclusions of this study. The mathematical forms of SVE and the numerical 
solutions of the proposed FSVEs are provided in Appendices A and B for readers interested in the underlying 
mathematics. Appendix C expands the approach to include space-dependent channel slopes.
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Model development
This section proposes the parsimonious models, which will subsequently undergo evaluation and application 
in the following section. The Saint-Venant equations (SVEs) are widely used to describe unsteady flow in open 
channels, which consists of the continuity equation and the momentum equation in the following standard form:

	
∂ A

∂ t
+ ∂ Q

∂ x
= q,� (1a)

	

∂ Q

∂ t
+ ∂

∂ x

(
Q2

A

)
+ gA

∂ hr

∂ x
= gA (J − Jf ) ,� (1b)

where A (= B • hr) is the cross-sectional area of the channel [ L2] (with B representing the width of the river 
channel [ L], and hr is the depth of the river [ L]), Q is the river discharge [ L3T −1], q is the lateral inflow per 
unit length [ L2T −1], g represents the gravitational acceleration [ LT −2], J is the channel slope [dimensionless], 
Jf is the friction slope [dimensionless] which can be approximated by the Chézy formula Jf = Q|Q|

C2A2R
, C  

denotes the Chézy coefficient [L½T−1], and R marks the hydraulic radius [ L].
The above-mentioned standard SVEs involve multiple interrelated variables. To facilitate numerical 

calculations, the SVEs can be rewritten as the following form with Z (denoting the river stage [ L]) and Q as 
dependent variables (see Appendix A for detailed derivation):
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Constant time fractional Saint-Venant equations (CtFSVE)
There exist various definitions of the time fractional derivative (hereinafter abbreviated as t-FD), including the 
Riemman-Liouville type, Caputo type, and Grünwald-Letnikov type, which account for the influence of memory 
(i.e., past states) on the present condition. The Caputo fractional derivative definition, characterized by its weak 
singularity, entails differentiating the target function first and then integrating. Notably, the Caputo definition 
necessitates specifying initial conditions in the form of integer-order calculus during integral transformations 
and practical problem-solving, rendering it widely applicable in real-world scenarios. The Caputo fractional 
derivative takes the form Sun et al.33:

	
∂ α f (t)

∂ tα
= 1

Γ (1 − α )

ˆ t

0

f ′ (τ )
(t − τ )α dτ , � (3)

where α  (here 0 < α ≤ 1) denotes the time fractional order, and Γ () represents the Gamma function.
The classic SVEs describe the flow process, primarily tied to the current state of the river. Nevertheless, 

actual river flow is influenced (such as retarded/retained) by various factors such as hyporheic exchange and 
channel topography. The tailing part of the hydrological process often exhibits slow decay, such as power-law 
behavior, indicating temporally non-local features, especially in cases of hydrograph retardation7,8. Therefore, 
we incorporate the time-fractional derivative (t-FD) – a non-local operator – into the constant time-fractional 
Saint-Venant equations (CtFSVE) framework, specifically applying it to the time-derivative terms of both 
governing equations: ∂Z/∂t in the continuity equation and ∂Q/∂t in the momentum equation:

	
bB

∂ α Z

∂ tα
+ ∂ Q

∂ x
= q,� (4a)

	
b

∂ α Q

∂ tα
+ ∂

∂ x

(
Q2

A

)
+ gA

∂ Z

∂ x
= −gAJf .� (4b)

.
Notably, the governing Eq. (4) revert to the classical SVEs when α = 1.
The CtFSVE (4a) and (4b) can be formulated either through fractional generalizations of the classical 

continuity and momentum equations (e.g., Demir et al.34 and references therein) or by employing a time 
subordination framework. The latter approach, as described in Zhang et al.35, provides a physically motivated 
pathway to incorporate the effects of hydrodynamic heterogeneity in river systems. This framework introduces 
the concept of operational time, which reflects the effective time that individual fluid parcels would require to 
traverse the system at a uniform mean velocity. In complex and heterogeneous domains such as river corridors, 
the operational time is inherently stochastic - some water parcels are delayed, while others move more swiftly 
- giving rise to memory effects and anomalous transport behavior. The dynamics of the operational time are 
governed by the following fractional diffusion Eqs35,36. :

	
b

∂ A(τ , t)
∂ t

= ∂ 1−α

∂ t1−α

∂ A(τ , t)
∂ τ

,
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where A(τ , t) is the probability density of operational time τ  at physical time t, b is a scaling constant with 
units [ T α −1], and 0 < α ≤ 1 is the fractional order. By integrating this time subordination formulation with 
the classical SVEs (2) and applying an inverse (right-sided) fractional derivative, the CtFSVE form (Eq. 4) is 
obtained.

Tempered time fractional Saint-Venant equations (TtFSVE)
Constant t-FD models are frequently employed to depict physical processes exhibiting power-law tailing 
characteristics. However, real-world hydrograph tailings do not always exhibit power-rate decay rates7,16. To 
address this, we introduce a truncation parameter to formulate tempered time fractional Saint-Venant equations 
(TtFSVE) that can more effectively capture the diverse hydrological tailing phenomena commonly observed. The 
governing equations are as follows:

	
Be
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(
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+ ∂ Q

∂ x
= q,� (5a)
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where λ  represents the truncation parameter [L/T], primarily governing the tailing segment of the hydrograph, 
and Lr  stands for the river length [L]. In this study, Lr  is defined as the length from the downstream cross-
section to the upstream cross-section. For example, if the hydrograph is calculated 5  km downstream from 
the upstream cross-section, Lr  is 5 km; if it is 10 km downstream, Lr  is 10 km. This definition enhances the 
flexibility of the FSVE in practical applications. For example, when calculating a flow network, we segment the 
river and combine the segments at the nodes, allowing each segment to have its own Lr . A larger value of λ  
indicates an earlier transition of the hydrograph tail from power-law attenuation to exponential attenuation. 
When λ = 0, the TtFSVE (5) simplifies to the CtFSVE (4). It is noteworthy that, unlike existing tempered 
fractional models used in solute transport simulation, the truncation parameter in the TtFSVE (5) is normalized 
by the river length Lr . When Lr  varies across different rivers or segments, the same λ  can have significantly 
different truncation effects on the hydrograph tail. Our numerical results showed that Lr  proportionally 
reduces the effect of λ . Therefore, we normalized λ  by Lr  to ensure consistent effects across different rivers or 
segments. This normalization is important because river length plays a key role in influencing the flow distance 
and, consequently, the hydrograph tailing behavior.

Variable time fractional Saint-Venant equations (VtFSVE)
The CtFSVE (4) and TtFSVE (5) are suitable for cases where the characteristics of a river system do not significantly 
change with time. However, since natural river systems are constantly evolving, it becomes necessary to establish 
a model that can describe the temporal changes of these river system characteristics. Therefore, we introduce the 
variable t-FD to capture the impact of varying river systems on the hydrograph.

The definition of variable derivative-FDs primarily consists of two types: V1 definition and V2 definition33. 
Specifically, the V2 definition implies that the order of integration or the fractional derivative itself retains 
memory (i.e., the variable order is embedded in the convolution, exhibiting strong memory)37. As a result, its 
computation is more complex, and it finds fewer applications in real-world scenarios. Within this context, we 
utilize the variable-order derivative type 1 (V1), which postulates that the systems’ memory characteristics 
evolve over time and are contingent upon the present state33,38. The formulation of V1 is as follows:

	

∂ α (t)f (t)
∂ tα (t) = 1

Γ (1 − α (t))

ˆ t

0
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(t − τ )α (t) ,� (6)

where 0 < α (t) ≤ 1. Using definition (6), we obtain the variable time fractional Saint-Venant equations 
(VtFSVE):
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The time-fractional derivative is employed to capture the temporally non-local (i.e., memory) behavior of river 
systems, effectively integrating various hydrologic mechanisms involving mass exchange between the open 
channel and its surroundings—such as river-floodplain exchange and bank storage, which delay open-channel 
flow—into a compact framework with a limited set of parameters (e.g., the fractional order α ). Our findings 
demonstrate that this approach is sufficiently robust for simulating long-term memory effects due to retention 
in many practical scenarios.

In contrast, space-fractional derivatives describe spatially non-local dynamics, where processes at one 
location can directly influence conditions at distant downstream neighbors. A typical example is shortcut or 
preferential flow, driven by turbulence (or facilitated through high-permeability subsurface pathways, such as 
fracture networks), which can bypass the main channel. While the inclusion of spatial fractional derivatives 
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may be theoretically appropriate for representing such phenomena, this extension lies beyond the scope of the 
present work.

Moreover, simultaneously including both time- and space-fractional terms would introduce two main 
challenges: (1) Increased model complexity, which would undermine the parsimony and interpretability of the 
framework; and (2) Greater computational demand, which could limit the model’s feasibility for real-time or 
large-scale applications. To maintain a balance between theoretical rigor and operational applicability, we have 
intentionally limited our scope to time-fractional derivatives in this study.

Distributed domain coupling model (DDCM)
A process-based open channel model is needed to compare with the proposed upscaling models and assess their 
feasibility. Wei et al.8 integrated the river dynamic process with groundwater flow to formulate a distributed 
domain coupling model (DDCM) and investigated the impact of riparian hydraulic coefficient and heterogeneity 
on hydrographs. The expression for the DDCM is as follows:
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∂ t
+ ∂ Q

∂ x
= q + qGr,� (8a)
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	 qGr = Kh (H − Z) /dx,� (8d)

where qGr  denotes the hydrologic exchange flow from riparian zones to the river channel [ L2T −1], u 
represents the velocity of the river flow [ LT −1], K is the hydraulic conductivity of the riparian zones [ LT −1

], h represents the thickness of water flow in the riparian zones [ L], and H  denotes the groundwater hydraulic 
head [ L]. Further details regarding the description, interpretation, and applicability of the DDCM (8) can be 
found in the work of Wei et al.8.

The spatial distribution of hydraulic conductivity K  in a heterogeneous riparian zone can be generated 
using gamma and lognormal distributions. The degree of heterogeneity is represented by the relative standard 
deviation (RSD), where a greater RSD indicates a stronger heterogeneity of the riparian zone. Based on the 
simulation results of Wei et al.8, it was observed that the influence of the gamma distribution and lognormal 
distribution on the hydrograph is similar. Therefore, for numerical simulations and model comparisons in this 
study, we selected the two-parameter gamma distribution for K . This distribution is described as follows:

	
fg (x) = 1

β aΓ (a)xa−1e−x/β , x ≥ 0,� (9)

where a is the shape parameter, and β  is the scale parameter.
In the next section, we assess these models and, more importantly, explore the physical implications of the 

t-FD by juxtaposing simulation outcomes from the DDCM (8) and the upscaling models, especially the TtFSVE 
(5).

Numerical results and discussion
This section aimed to identify the most efficient fractional-order hydrodynamic model with fewer parameters, 
using fractional calculus, by evaluating the feasibility and advantages of fractional-order SVEs in upscaling 
river flow through numerical experiments. Section 3.1 introduces the numerical solver, and Sect. 3.2 covers the 
synthetic case setup. Section 3.3–3.5 analyze the performance of CtFSVE (4), TtFSVE (5), and VtFSVE (7) in 
describing hydrographs through numerical experiments, examining the impact of fractional model parameters 
(constant fractional derivative, truncation coefficient, variable fractional derivative) on hydrographs and their 
physical implications. Section 3.6 further compares TtFSVE (5) with the physical-based DDCM model using 
numerical tests, highlighting the similarities and differences between the fractional-order SVE and the process-
based physical model.

Numerical strategy
We use an implicit finite difference scheme to solve the fractional-order SVEs. This approach, proven effective by 
various researchers for fractional derivative models, offers benefits such as accuracy, stability, and minimal time 
and space step requirements39,40. Details of the solving steps are provided in Appendix B. The DDCM model is 
solved using the Preissmann difference scheme41 and the alternating direction implicit method42,43. For further 
details on the DDCM model’s solver, please refer to our previous work8. It should be noted that the calibration 
of model parameters in the following numerical examples—including α  and λ  in the fractional-order SVEs, 
and K and RSD in the DDCM—was achieved through an iterative trial-and-error optimization process to best 
match the observed hydrograph data.

Synthetic case setting
In the following numerical examples, we analyze a rectangular river channel, 6000 m long and 40 m wide. The 
water surface slope, denoted as J, is 0.002 (note that in our model, J can vary freely with flow distance and 
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can be conveniently calculated using the numerical solver presented in Appendix B. A constant J is used here 
for the sake of a simplified synthetic case), Manning’s roughness coefficient is assigned a value of 0.03, and 
the initial river stage, Z0, is 3 m. Using Manning’s formula, the background discharge Q0 is calculated as 
Q0 = AC

√
RJ , where R is the hydraulic radius [L]. To better capture post-flood flow variations, the simulated 

hydrographs subtract this background discharge. Hydrographs are modeled 6 km downstream, with continuous 
flood flow at the upstream boundary, following the discharge variation equation from Tunas44:

	
qu (t) =

{(
t

TP

)
exp

(
1 − t

TP

)}C1
,� (10a)

	 Q (t) = QP • qu (t) ,� (10b)

where qu (t) is the unit discharge [dimensionless], TP  denotes the peak flood time [T], C1 stands for the 
coefficient of peak time, Q (t) is the upstream discharge [ L3T −1], and QP  is the peak flow of the flood 
[ L3T −1]. Without specific instructions, we set TP = 3600 s, C1 = 1.8, and QP = 500 m3/s.

Impacts of constant time fractional derivative on hydrograph patterns
Figure 1 illustrates hydrographs simulated using the CtFSVE (4) with varying constant t-FD values ( α ). As 
depicted in Fig. 1a, reducing α  leads to a lower peak discharge, delayed peak arrival time, and an enhancement 
tail on the hydrograph tail. Under the same initial and boundary conditions, the classical SVEs (which are the 
simplified Eq. (4) with α = 1) yield a peak discharge of 489.94 m3/s and a peak arrival time of 4700 s. As 
α  decreases to 0.95, 0.90, and 0.85, the simulated hydrograph’s peak discharge drops to 459.04 m3/s, 409.67 
m3/s, and 341.61 m3/s, with peak arrival times extending to 5250 s, 6050 s, and 7100 s, respectively. The 
semi-logarithmic inset in Fig. 1a highlights that a smaller t-FD leads to a more pronounced hydrograph tail. 
Previous studies have emphasized the role of factors like hydrologic exchange flow7,8, riverbed morphology45, 
and riverbank storage46 in shaping hydrograph. However, isolating their individual impacts is often complex 
in real-world systems. The CtFSVE (4) model, with just one additional parameter ( α ), effectively captures the 
combined effect of these factors on the hydrograph. A smaller t-FD magnifies the impact of these elements on the 
hydrograph, leading to reduced peak discharges, delayed peaks, and extended late-time tails. Our simulations 
confirm that CtFSVE conserves mass (Fig. 1b), showing that, compared to SVE, the flow discharge modeled by 
CtFSVE requires a long duration to fully discharge downstream.

Figure 1b displays the cumulative flow discharge ( V =
´ t

0Q • dt) at the downstream section (x=6000 m) 
over time for different α  values ( α =1, 0.95, 0.90, and 0.85). The results demonstrate that although α  affects 
the hydrograph’s shape, the cumulative discharge at the downstream section remains consistent. A lower α  
corresponds to increased river flow into the riparian zone, requiring more time for the water to return to the 
main channel. This results in a slower rise in cumulative discharge at the downstream section.

Impacts of the truncation parameter on hydrograph patterns
Figure 2 presents computed hydrographs and cumulative discharge at the downstream cross-section using the 
TtFSVE (5) with different λ  values. Figure 2a reveals that λ  predominantly influences the tail portion of the 
hydrographs, with minimal impact on the peak. As λ  increases, the long-duration hydrograph tails shift from 
power-law decay to exponential decay. Furthermore, Fig. 2b demonstrates that changes in the hydrograph’s tailing 
pattern have little impact on cumulative discharge when λ < 1 × 10−3. Specifically, at λ = 1 × 10−3, the 
total water loss is 0.92%, highlighting the subtle influence of tailing pattern variations on cumulative discharge. 
However, as λ  increases, total water loss grows, likely due to water entering unsaturated zones without returning 
to the river channel. This lost water may become capillary or hygroscopic water or get entrapped in semi-closed 
pores, preventing it from rejoining the river and contributing to the deviation from power-law tailing behavior.

Impacts of variable time fractional derivative on hydrograph patterns
Figure 3 provides a comparative analysis between the numerical results of the VtFSVE (7) and the CtFSVE (4), 
focusing on the effects of varying the t-FD, both increasing and decreasing, on the simulated hydrographs.

Initially, we explore the effects of a decreasing t-FD over time on the hydrograph pattern. Assuming α = 0.95 
and α (t) = 0.95 − 0.2 • t/T , where T is the total time, the results in Fig. 3 reveal distinct characteristics. 
The hydrograph generated by the VtFSVE (7) exhibits a slower peak discharge and more pronounced tailing 
compared to the CtFSVE (4). As shown in Fig. 3b, the decreasing t-FD increases the cumulative flow volume at 
the downstream cross-section. This effect could represent an evolving river system, where riparian zone porosity 
and permeability change over time due to physical and/or hydrological processes like earthquakes, extreme 
rainfall, and soil erosion47,48. These dynamics are captured by the VtFSVE (7) through its decreasing t-FD. 
Increased porosity and permeability allow more water to enter the riparian zone, reducing the peak discharge. 
Furthermore, about 8% of the total discharge comes from stored soil water being released and reentering the 
river, further increasing the overall flow.

Next, we examine the impact of an increasing t-FD on the simulated hydrograph. Here, α  is set to 0.75, 
and α (t) = 0.75 + 0.2 • t/T . As depicted in Fig. 3a, the hydrograph computed by the VtFSVE (7) presents a 
higher peak discharge and a less pronounced tail compared to the CtFSVE (4). Figure 3b further elucidates that 
the flow dynamics captured by the VtFSVE (7), with an escalating t-FD, encounter greater river water loss as 
it interacts with the surrounding environment. This evolution described by the VtFSVE (7) with an increasing 
t-FD reflects a river system where riparian zone porosity and permeability decrease over time due to physical 
and biochemical processes such as colloid accumulation, resulting in soil pore blockage. Consequently, the 
hydrograph experiences two effects: first, the reduced porosity and permeability create greater resistance for 
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river water entering the riparian zone, increasing the hydrograph’s peak discharge. Second, some river water is 
retained in the soil as pore water, reducing the total flow at the downstream section. In this case, about 18% of 
the total discharge is stored as soil water.

The time-dependent index α (t) in Eq. 7 was used to describe the temporal retardation effect of the river 
system on hydrographs. Similar to the constant α  used by most fractional-derivative models in hydrology (as 
reviewed extensively by Zhang et al.49, α (t) must be determined through fitting methods. This means the 
fractional SVE models proposed in this study are fitting models, not predictive ones. The relationship between 
α (t) and the physical and hydrologic parameters of the river or riparian zone will be explored in a future study, 
as it is complex and beyond the scope of this work.

To draw a summary, we evaluated the performance of three fractional order SVE models in simulating 
hydrograph tailing. Our findings suggest that the index in the fractional SVE may not need to be as complex 
as a time-dependent function like Eq. 7. Instead, the CtFSVE (Eq. 4, with a constant α ) effectively simulates 

Fig. 1.  Numerical experiments and parameter sensitivity analysis: (a) The simulated hydrographs 
(background-subtracted) are displayed in both Cartesian coordinates and semi-logarithmic coordinates to 
show the impact of constant t-FD on the peak and tailing behavior of hydrographs. (b) Shows the temporal 
evolution of the cumulative discharge across the downstream cross-section.
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hydrograph tailing with only one additional parameter, α . Therefore, we recommend starting with this model 
before considering the more complex TtFSVE (5) and VtFSVE (7) models.

Comparison with the physical-based model
Wei et al.8 developed a physical-based model called DDCM (8), which couples river flow with groundwater 
dynamics. Their findings highlighted the influence of hydrologic exchange flow, modulated by the riparian 
zone’s hydraulic conductivity and soil heterogeneity, on the hydrograph’s peak and tailing characteristics. In this 
section, we compare the simulated results of the TtFSVE (5) and DDCM (8) models to clarify the significance of 
the t-FD ( α ) and the truncation parameter ( λ ).

Firstly, we assess the interchangeability of numerical results between the TtFSVE (5) and DDCM (8). As 
illustrated in Fig. 4, we employ the TtFSVE (5) with varying t-FD values ( α = 0.95, 0.90, and 0.85) to 
compute hydrographs. Subsequently, we calibrate the parameters K and RSD within the DDCM (8) to match 
these hydrographs. According to Wei et al.8, K exerts pivotal control over hydrograph patterns, while riparian 
zone heterogeneity (represented by RSD) further influences the hydrograph’s peak and late-time tailing. To this 
end, we initially determine an appropriate K value, followed by generating 100 heterogeneous K fields with RSD 
= 1.5 for corresponding simulations. Figure 4a illustrates that, with α = 0.95 and K = 0.00002 m/s, the peak 
segments of hydrographs from both models closely match, although DDCM (8) exhibits a slightly higher tailing 
than TtFSVE (5). Figures 4b and c reveal that, as α  decreases to 0.90 and 0.85, the parameter K in DDCM (8) 
needs to be adjusted to 0.00007 m/s and 0.00022 m/s, respectively, to achieve similar hydrographs between these 

Fig. 2.  Numerical experiments and parameter sensitivity analysis: (a) The simulated hydrographs with various 
λ  values in semi-logarithmic coordinates. (b) The temporal evolution of the cumulative discharge across the 
downstream cross-section.
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two models. As a result, the peak portions of TtFSVE (3)-generated hydrographs gradually diverge from their 
DDCM (8) counterparts, while their tailing segments progressively converge toward asymptotes. The numerical 
results indicate that a decrease in α  correlates with an increase in K, signifying that the dynamic river process 
described by TtFSVE (5) with a smaller α  reflects a higher hydrologic exchange rate. Notably, when λ > 0, 
the differences between the hydrographs simulated by TtFSVE (5) and DDCM (8) increase, so we set λ = 0 in 
this case. In summary, while adjusting RSD permits similarities in the hydrographs simulated by both models, 
inherent differences between them remain.

Secondly, we compare the TtFSVE (5) and DDCM (8) models in capturing the long-term tailing behavior of 
hydrographs. As illustrated in Fig. 5, the total modeling period extends to 4 × 107 s, where both models exhibit 
segmentation in the hydrograph tails. We divide the late-time tail into two sections: a short-term tail ( 5 hour 
to 280 hour) and a long-term tail ( 280 hour to infinity). The hydrograph’s attenuation rates in the long-term 
tail progressively transition from power-law decay to exponential decay. While TtFSVE (5) and DDCM (8) 
differ in the short-term segment, they converge in the long-term segment. For DDCM (8), the short-term tail is 
controlled by parameter K, and the long-term tail by RSD, reflecting riparian zone heterogeneity. In TtFSVE (5), 
α  governs the short-term tailing behavior, while λ  controls the long-term behavior, with λ  values indicating 

Fig. 3.  Numerical experiments and parameter sensitivity analysis: (a) Comparison of the influence of constant 
t-FD and variable t-FD on simulated hydrographs. (b) Temporal variation of the total flow volume across a 
downstream section.
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Fig. 4.  Comparison of the numerical results of TtFSVE (3) (the black, solid line) and DDCM (6) (the blue, 
dashed lines). (a) α = 0.95 and λ = 0 in the TtFSVE, and K = 0.00002 m/s and RSD = 1.5 in the DDCM. (b) 
α = 0.90 and λ = 0 in the TtFSVE, and K = 0.00007 m/s and RSD = 1.5 in the DDCM. (c) α = 0.85 and 
λ = 0 in the TtFSVE and K = 0.000202 m/s and RSD = 1.5 in the DDCM. The hydrographs are displayed in 
both semi-logarithmic and Cartesian coordinates to show the difference in the peak and tailing parts.
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the degree of riparian zone heterogeneity: stronger heterogeneity results in long-term tailing behavior closer to 
power-law attenuation (resulting in a λ  value approaching 0). Table 1 lists the RSD (DDCM) and λ  (TtFSVE) 
values used to ensure consistency in the long-term tailing behavior of both models.

In summary, TtFSVE differs from DDCM in describing the hydrograph’s late-time tail. Numerical results 
show that TtFSVE is more flexible, capturing both power-law decay and the transition from power-law to 
exponential decay in the tailing morphology (Fig. 2). DDCM, on the other hand, is suited for modeling tail 
behavior with power-law decay, as changes to RSD in DDCM primarily affect long-term tailing of the hydrograph 
with minimal impact on short-term tailing dynamics.

It is noteworthy that the VtFSVE (7) can capture tailing behavior with a variable decay rate, similar to the 
DDCM (8) simulations. However, a main difference is that the river system characteristics in VtFSVE (7) evolve 
over time. As a result, this study does not directly compare these two models.

Analysis of model numerical results
In summary, the fractional-order SVE and DDCM models differ in how they describe hydrographs. The 
fractional-order SVE uses fractional operators to capture delayed effects of various environmental factors on 
flow with fewer parameters than DDCM. DDCM accounts for the retardation effect of riparian zones on river 
flow due to surface-subsurface water exchange, where higher permeability in riparian zones leads to a stronger 
retardation effect and more pronounced tailing. In the fractional-order SVE, a smaller fractional derivative 
represents a stronger combined retardation effect of various hydraulic processes on river flow. Thus, high 
permeability in riparian zones corresponds to a smaller fractional derivative. While the fractional approach is 
simpler and more parsimonious, it represents retardation as a lumped effect and does not differentiate among 
the specific underlying processes (e.g., permeability contrasts, channel–floodplain exchange, or subsurface 
heterogeneity), whereas the DDCM can offer greater process-level interpretability.

Additionally, compared to DDCM, the fractional-order SVE shows slower peak arrival, lower short-term 
tailing, and more prolonged long-term tailing. Studies7,8 suggest that the re-entry of water from riparian zones 
into the river is one of the main causes of hydrograph tailing. Simulations using the fractional-order SVE indicate 

RSD (DDCM) λ  (m/s) (TtFSV)

0.0 (4.5 × 10−8 , 5.5 × 10−8)

0.5 (1.5 × 10−8 , 2.5 × 10−8)

1.0 (1.0 × 10−9 , 3.0 × 10−9)

1.5 (0, 1.0 × 10−9)

Table 1.  The corresponding relationship between RSD (in DDCM) and λ  (in TtFSVE) (see Sect. 3.6 for 
detailed modeling).

 

Fig. 5.  Comparative analysis of hydrographs simulated by the TtFSVE (3) model (symbols) and the DDCM 
(6) model (lines) over an extended time frame. In the TtFSVE (3) model, the t-FD and truncation parameter 
are specified as α = 0.90 and λ = 0, 2 × 10−9, 2 × 10−8, and 5 × 10−8. Meanwhile, the parameters 
utilized within the DDCM (6) model are set as K = 0.0007 m/s and RSD=0, 0.5, 1.0, and 1.5.
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that post-flood water continues to influence river flow for an extended period, increasing river flow over time. 
The next section will explore the fractional-order SVE’s applicability to field data predictions.

Field applications
Application 1: flood data at the river Wyre, UK
The flood data from the River Wyre, UK50, was used to evaluate the practicability of the proposed TtFSVE 
model. Two points regarding the model selection are noted here: (i) The CtFSVE is a specific case of the TtFSVE, 
and (ii) we believe that the VtFSVE is more appropriate for representing hydrologic processes occurring over 
longer timescales (e.g., seasonal to annual variation). However, the observed flood events in the River Wyre case 
study lasted less than 200 h, we assume that the river system characteristics remained approximately constant 
over each event. As such, the use of a variable-order fractional derivative was not considered necessary. Based on 
these factors, the TtFSVE was selected for simulation, with classical SVEs and the DDCM serving as reference 
models for comparation and performance evaluation.

Data from two flood events, referred to as “Event Dec. 1960” and “Event Jan. 1969”, were selected for 
simulation50. These events are distinguished by their dates, with observation points located 70 km apart, covering 
both upstream and downstream areas. Data for the river channel were sourced from Google Earth: the water 
surface slope J was 0.00045, and the river width B ranged from 39 m to 53 m, with an average of 44.8 m. The 
roughness coefficient nc was fitted and set to 0.03 for the simulation. Inflow data was used as the input, and the 
three models mentioned above (SVE, TtFSVE, and DDCM) were applied to simulate the outflows, as shown in 
Fig. 6. The TtFSVE model required fitted parameters α  and λ , while the DDCM model used parameters K and 
RSD, with the fitted values listed in Table 2. The accuracy of the three models was assessed using the coefficient 
of determination (R2) and root mean square error (RMSE), as shown in Table 2.

Figure 6a compares the modeling results with field data for Event Dec. 1960. The SVE model overestimates 
the flood peak and predicts its arrival earlier than observed. This discrepancy is likely due to the SVE’s exclusion 
of factors such as hydrological exchange between the river and the riparian zone, among other influences. In 
contrast, the DDCM model, which accounts for lateral hydrologic exchange, produces a flood peak value closer 
to the observed data. However, the DDCM also predicts an earlier arrival of the flood peak, which may be due to 
unmodeled factors, such as river channel characteristics51,52 and the extent of floodplain inundation50,53, both of 
which can affect flood travel time. In contrast, the TtFSVE model closely matches the observed data, accurately 
capturing the flood’s magnitude and pattern. Although the TtFSVE does not explicitly account for specific 
factors like hydrologic exchange, channel curvature, or floodplain dynamics, this upscaling model effectively 
describes the delayed hydrograph influenced by these factors. This accuracy is achieved through the use of 
fractional derivatives and the truncation parameter.

Figure 6b shows the comparison between the simulated and observed outflows for Event Jan. 1969. While the 
TtFSVE model offers the best fit, with a higher R2 and lower RMSE compared to the SVE and DDCM models, 
it apparently underestimates the flood peak. An analysis of the total inflow and outflow reveals that the outflow 
volume ( 1.89 × 108 m3) exceeds the inflow volume ( 1.76 × 108 m3), suggesting the possibility of rainfall 
or other inflows within the observed reach during the flood. Without this additional data, none of the models 
achieved satisfactory agreement in their simulations.

Two additional points need clarification: (1) Why is the t-FD ( α ) different for the two flood events on 
the same river? First, the two events involved markedly different flow magnitudes and floodplain interactions. 
One event produced no overbank flow, while the other exceeded floodplain elevation, resulting in distinct 
river–floodplain exchange behaviors. These differences influence flow retention and attenuation50,53, which we 
interpret as a valid reason for differing fractional orders. Second, the events occurred nine years apart, during 
which changes in channel morphology, floodplain roughness, or other river characteristics may have altered the 
flow-path structure and transport behavior. (2) The simulation results of all three models (SVE, TtFSVE, and 
DDCM) are sensitive to initial and boundary conditions. More accurate results can be achieved with precise 
data on the initial river stage and recharges. The DDCM also requires details on the initial water level of the 
riparian zone and rainfall distribution. These additional data can significantly improve the models’ accuracy and 
reliability.

Application 2: flow data at the Songzi River, China
The previous application showed that the truncation coefficient primarily influences the tail of the hydrograph, 
with a slight impact on flood peak magnitude (also shown in Fig.  2). For a single flood event, the TtFSVE 
effectively models the entire hydrograph. However, when managing continuous upstream flows, accurate flood 
peak prediction becomes important, and flood peaks are not highly sensitive to the truncation coefficient. 
Therefore, in Application 2, we evaluate the performance of CtFSVE (equivalent to setting the truncation 
coefficient in TtFSVE to 0) for simulating real-world successive flood events.

The study area is a section of the Songzi River, as shown in Fig. 7. The Songzi River flows through Hubei 
and Hunan provinces, China, with coordinates 110°55’–112°12’E and 29°19’–30°35’N. The river network in this 
study is located in Anxiang County, Hunan Province, and includes four hydrological stations: Dahukou (H1), 
Zizhiju (H2), Huiku (H3), and Anxiang (H13). Daily flow data from these stations, covering the period from 
April 1 to September 30, 2021, were provided by Changjiang Water Resources Commission of the Ministry of 
Water Resources (http://www.cjw.gov.cn/).

During the simulation, the study river network was divided into 10 channels. River length, water surface 
slope, and width data, obtained from Google Earth for each channel, are listed in Tables 3 and 4. Appendix C 
outlines how to handle cases with space-dependent river cross-sectional area “ A”. Flow data from April 1 to 
May 30, 2021, was used for parameter calibration, while data from June 1 to September 30, 2021, was used for 
model validation. The SVE model was selected as the reference to assess CtFSVE’s performance. Both models 
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(SVE and CtFSVE) used a time step ( ∆ t) of 10 min and a space step ( ∆ x) of 100 m. With river length, width, 
and slope set according to Tables 3 and 4, the SVE model required calibration only for the riverbed roughness 
coefficients, while CtFSVE needed calibration for both roughness coefficients and the t-FD. The SVE model was 
first calibrated for roughness using the initial two months’ data. With the roughness coefficient for each channel 
fixed, the t-FD for CtFSVE (assumed the same across all channels) was calibrated, resulting in a value of 0.85. 
The calibrated roughness coefficients are shown in Table 3, and performance was evaluated using the coefficient 
of determination and Nash-Sutcliffe efficiency (NSE), as presented in Table 5. Here, NSE (from 0 to 1) quantifies 
how well the model replicates observed dynamics, with higher values indicating better performance.

For actual flow networks, FSVEs (including CtFSVE, TtFSVE, and VtFSVE) remain applicable, as they follow 
the same method as the classical SVE for flow calculation. First, tributary flow is computed, followed by step-by-
step determination of mainstream flow based on the relationship between flow and water level. The numerical 
approximation of fractional-order derivatives, which are unaffected by channel shape or bed slope (as shown 
in Appendix B), is consistent for both flow networks and single river channels. Since FSVEs use the Caputo 
fractional derivate, the initial and boundary conditions (including internal and external boundaries of the river 
network) are the same as for SVE. Additionally, the channel shape is not restricted to prismatic forms, and river 

Fig. 6.  Field application #1: Comparison of the numerical results (simulated by SVE, TtFSVE and DDCM) 
and the observed hydrographs obtained from O’Donnell (1985). (a) Modeling results and the observed data for 
Event Dec. 1960. (b) Modeling results and the observed data for Event Jan. 1969.
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width, bed slope, and channel roughness can vary spatially. These factors do not impact the time fractional 
derivative term in the governing equations, so FSVEs and their numerical solvers remain applicable.

As shown in Fig. 8, some peak values simulated by the SVE (e.g., on days 82, 108, and 146) exceeded the 
observed data, with peaks arriving earlier than the actual observation. In contrast, the peaks simulated by the 
CtFSVE during these periods were closer to the observed values. In some cases, such as from days 160 to 170, the 

Fig. 7.  Field application #2: The study river is in Anxiang County, Hunan Province, China (marked by the red 
dot). Four hydrological stations are situated along the river: Dahukou (H1), Zizhiju (H2), Huikou (H3), and 
Anxiang (H13) (shown in red on the map). To calculate flow discharge, the river was divided into 10 sections. 
Detailed segmentation information is provided in Tables 3 and 4. The map components in Figure originate 
from the following sources: (1) Satellite imagery: Google Earth ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​g​o​o​g​l​e​.​c​n​/​i​n​t​l​/​z​h​-​C​N​/​e​a​r​t​h​/​v​e​r​s​
i​o​n​s​/​​​​​, Version: V1.1.2). (2) Administrative boundaries of China: Adapted from the official standard map (Map 
Review No.: GS(2022)4309) hosted by China’s Standard Map Service platform (permanent URL: ​h​t​t​p​:​​​/​​/​b​z​d​​t​.​c​​h​.​
m​​n​r​.​g​​o​v​​​.​c​n​/​b​​r​o​​w​s​e​​.​​h​t​m​l​?​​p​​i​c​I​d​​=​%​2​2​4​​o​2​8​b​0​6​​2​5​5​0​1​a​​d​1​3​0​1​5​​5​0​1​a​d​2​b​f​c​0​6​9​6​%​2​2).

 

Event Dec. 1960 α

λ (m/s)
K (m/s) RSD R2

RMSE
(

m3/s
)

TtFSVE 0.98 0 – – 0.9663 6.31

DDCM – – 3 × 10−7 0.5 0.9524 10.72

SVE – – – – 0.9507 9.97

Event Jan. 1969 α
λ (m/s)

K (m/s) RSD R2 RMSE
(

m3/s
)

TtFSVE 0.89 5 × 10−4 – – 0.9221 24.14

DDCM – – 3 × 10−7 0 0.3611 67.10

SVE – – – – 0.3533 58.74

Table 2.  Application 1: the calculation accuracy of the SVE, TtFSVE, and DDCM, and the parameters used by 
TtFSVE and DDCM for simulating the two flood events field data.
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SVE performed better than the CtFSVE. Overall, based on the flow peak simulations and the calculated R2 and 
NSE values (Table 5), the CtFSVE (R2 > 0.94, NSE > 0.91) outperformed the SVE (R2 > 0.91, NSE > 0.89).

Notably, the same t-FD value was used for all channels (Channel 1-Channel 10) in this case. The t-FD 
represents the riparian zone’s impact on flow retardation, influenced by factors like channel shape, riparian 

Channel no. Section no.
River width 
(m) Interval (m) Channel no. Section no.

River 
width 
(m) Interval (m) Channel no. Section no.

River 
width 
(m)

Interval 
(m)

C3

H1 117.1

C1

H3 35.3

C7

H6 404.0

C3-1 118.7 2267.7 C1-1 37.3 1256.0 C7-1 166.1 366.5

C3-2 137.8 1095.1 C1-2 139.7 2014.3 C7-2 122.7 449.0

C3-3 152.7 1704.4 C1-3 100.6 2782.9 C7-3 126.4 684.3

C3-4 110.2 1538.5 H4 151.3 1078.2 H8 151 581.8

C3-5 165.1 2134.3

C4

H4 151.3 C7-4 141.7 375.9

C3-6 205.4 1387.6 C4-1 118.4 530.9 C7-5 146.2 475.2

H5 267.2 2257.2 C4-2 158.4 998.4 C7-6 174.7 259.0

H2 235.9 C4-3 87.1 967.9 H9 673.3 250.7

C2-1 218.3 1404.4 H5 267.2 859.8 H9 673.3

C2-2 246.7 1398.1 H6 404.0 C9-1 321.7 301.6

C2-3 210.3 1566.7 C6-1 189.0 456.7 C9-2 300.7 195.6

C2

C2-4 209.5 1556.9 C6-2 187.4 421.2

C9

C9-3 254.9 320.1

C2-5 221.1 1105.7

C6

C6-3 200.9 335.5 H11 338.0 281.4

C2-6 243.4 1515.8 H7 211.7 268.9 C9-4 315.1 152.4

C2-7 87.0 2245.5 C6-4 227.1 531.1 C9-5 322.2 285.5

C2-8 101.4 564.1 C6-5 276.4 497.4 C9-6 325.48 286.8

H4 151.3 1190.6 C6-6 319.7 368.5 H12 328.3 368.1

C5

H5 267.2 H9 673.3 429.9

C10

H12 328.3

C5-1 233.4 195.4

C8

H9 673.3 C10-1 216.2 436.0

C5-2 238.3 217.2 C8-1 130.1 258.9 C10-2 228.2 578.4

C5-3 216.3 196.6 C8-2 115.1 224.2 C10-3 280.8 635.4

H6 404.0 319.7 C8-3 117.5 314.0 H13 268.0 418.7

H10 109.5 323.7

C8-4 104.8 266.3

C8-5 94.1 356.5

C8-6 86.3 232.7

H12 328.3 392.9

Table 4.  Application 2: river width information for each channel in the river network was acquired using 
Google Earth. A number of cross-sections were selected in the middle of each channel (not shown in Fig. 7), 
and the distances between adjacent cross-sections, as well as the river width of each, were measured. For 
example, in Channel 3 (C3), besides the H1 and H2 sections, six additional sections (C3-1 to C3-6) were 
selected using Google Earth.

 

River channel no. Flow direction Length (m) Water surface slope Roughness coefficient

Channel 1 (C1) H3→H4 7131 0.0006 0.020

Channel 2 (C2) H2→H4 12,548 0.0006 0.022

Channel 3 (C3) H1→H5 12,385 0.0003 0.022

Channel 4 (C4) H4→H5 3357 0.0006 0.021

Channel 5 (C5) H5→H6 905 0.0011 0.020

Channel 6 (C6) H6→H7→H9 3100 0.0005 0.022

Channel 7 (C7) H6→H8→H9 3486 0.0005 0.022

Channel 8 (C8) H9→H10→H12 2529 0.0006 0.021

Channel 9 (C9) H9→H11→H12 2128 0.0006 0.024

Channel 10 (C10) H12→H13 1824 0.0006 0.022

Table 3.  Application 2: river network segmentation and river channel number information. The water surface 
slope was calculated using the elevation data of upstream and downstream cross-sections from Google Earth. 
Roughness coefficients were derived from SVE using flow data from April 1 to May 30, 2021.
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zone soil properties, and hydrologic exchanges5,8. To improve simulation accuracy, different t-FD values can 
be applied to different channels. However, the primary goal of this case study is to validate the CtFSVE’s ability 
to simulate complex river network. For simplicity, a uniform t-FD value was used across all channels. In this 
case, CtFSVE adds the constant t-FD parameter to SVE, improving its ability to simulate and predict flood peak 
magnitude and timing, making it promising for real-world applications.

This study represents, to the best of our knowledge, the first application of time-fractional Saint-Venant 
equations to real-world hydrograph data. While the fractional model does not uniformly outperform the 
classical formulation across all parts of the hydrograph, it demonstrates notable advantages in capturing 
retardation effects - a signature of memory and anomalous transport in natural channels. For instance, although 
the classical SVEs better capture the rising limb in Fig. 6a, the fractional model provides improved performance 
in Fig.  7b, particularly during the recession limb. These contrasting cases highlight both the strengths and 
current limitations of the FSVE approach.

Moreover, our results show that the fractional SVE model also outperforms a data-driven LSTM model, a 
popular machine learning method for hydrograph prediction, further demonstrating its physical relevance and 
modeling capability in capturing flow memory and recession behavior.

Given the growing interest in fractional SVEs and shallow wave equations in recent years54–56, this study 
provides the first critical field-based assessment of their applicability. Importantly, it also identifies areas for 
further improvement, offering insights that can guide future refinements of the fractional modeling framework. 
While additional visual or residual-based analyses could enrich the interpretation, we believe the current study 
already delivers substantial value by bridging theoretical development with field validation.

Comparison to machine learning simulation of hydrograph
Here we incorporate a Long Short-Term Memory (LSTM) machine learning approach to simulate stream 
discharge shown in Application 2. First proposed by Hochreiter and Schmidhuber57, LSTM can capture 
long-term dependencies, handle nonlinear dynamics, perform automatic feature learning, and tolerate noise, 
making it a popular tool for real-time applications and hydrological time-series simulation58–61. We selected 
LSTM for three well-known reasons: (i) Complexity of hydrologic processes: LSTM models manage complex 
temporal dependencies without requiring detailed physical assumptions; (ii) Data availability and efficiency: 
LSTM models can learn directly from streamflow records, often reducing the need for extensive hydraulic 
and topographic data; and (iii) Computational speed and scalability: Once trained, LSTM models can quickly 
generate simulations, making them ideal for real-time applications. Comparing LSTM models with the Saint-
Venant equations discussed above might reveal each approach’s limitations.

LSTM models require large and diverse datasets to generalize predictions to new locations and scenarios, 
including extreme, unseen conditions62–64. Given the relatively limited dataset size, we did not conduct extensive 
hyperparameter tuning but instead adopted configurations previously shown to perform well in hydrological 
modeling. We implemented both a standard LSTM model and a variant we refer to as the ‘LSTM multiplier 
model’, using the PyTorch framework. The standard LSTM model uses a single-layer, unidirectional architecture 
with 64 hidden units and a dropout rate of 0.4. Input features consist of discharge and stage time series from 
three upstream stations, with a sequence length of two days. The model outputs predictions of discharge and 
stage at the target station.

The LSTM multiplier model uses a similar structure (single-layer, unidirectional, 64 hidden units, 0.4 
dropout), but it is designed to dynamically learn weights that modulate the contributions of upstream station 
inputs. These learned weights are applied to the final timestep of each sequence to generate predictions, allowing 
the model to capture co-varying upstream influences. A longer input sequence of eight days was used for this 
architecture.

For both models, we trained an ensemble of 32 instances over 32 epochs using a batch size of 8. The Adam 
optimizer was used with an initial learning rate of 0.01 and mean squared error (MSE) was used as the loss 
function.

Our results show that the short 60-day calibration/training period (April 1 to May 30, 2021) is insufficient for 
accurate LSTM performance (see the grey line in Fig. 9a), so we extended the training period to 274 days (adding 
April 1 to October 31, 2022) (red line in Fig. 9a). As expected, the 60-day training resulted in lower performance 
(R2 = 0.92) on the testing period (June to October 2021) compared to the extended training period (R2 = 0.97). 
The LSTM multiplier model improved short-period training performance (R2 = 0.96) (grey line in Fig. 9b), but 
did not enhance the longer training period results (R2 = 0.95) (red line in Fig. 9b).

The LSTM model offers a useful comparison to CtFSVE by demonstrating machine learning’s capability to 
simulate complex hydrological systems without direct physical parameterization. The LSTM model results align 
with expectations from previous studies (see the references cite above), highlighting the value of direct parameter 

Model Modeling period R2 NSE

SVE
2021.04-2021.05 0.9256 0.9099

2021.06-2021.09 0.9118 0.8986

CtFSVE
2021.04-2021.05 0.9772 0.9482

2021.06-2021.09 0.9451 0.9114

Table 5.  Application 2: the coefficient of determination (R2) and Nash-Sutcliffe efficiency (NSE) of the 
numerical results simulated by SVE and CtFSVE.
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calibration in CtFSVE, especially in shorter training scenarios. CtFSVE’s physical foundation, strengthened by 
the constant time fractional derivative, enhances its accuracy in capturing flood peak magnitudes and timing 
in complex river networks. This ability to simulate realistic hydrodynamic responses with limited training data 
offers a clear advantage over machine learning models like LSTM in data-sparse conditions or where system 
changes are challenging to capture using historical data alone.

Fig. 8.  Field application #2: (a–c) show the observed daily streamflow at the three upstream hydrological 
stations, while (d) compares the numerical results (simulated by SVE and CtFSVE) with the observed daily 
streamflow at Anxiang hydrological station. The flow discharge data from four stations covers the period from 
April to September 2021.
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Conclusion
Fractional Saint-Venant equations (FSVEs) have been studied mathematically, but with limited forms and unclear 
discrepancies, obscure physical interpretations, and lack of real-world application. To address these three main 
limitations, this study proposed various FSVEs to simulate hydrographs with peak attenuation and late-time 
tailing. It assessed the effects of time fractional derivative (t-FD) and the truncation parameter on hydrograph 
shape and magnitude. A comparison with a physical-based DDCM model also explored the relationship between 
these FSVE parameters and DDCM properties, such as hydraulic conductivity and riparian zone heterogeneity. 
Theoretical analysis, numerical comparisons, and field applications led to three main conclusions.

Model forms and comparison: The three FSVEs—Constant, Tempered, and Variable Time Fractional Saint-
Venant Equations (CtFSVE, TtFSVE and VtFSVE, respectively)—share a common feature but are significantly 
distinct. All these FSVEs use a single parameter, t-FD, to capture a river system’s retardation effects on open 
channel flow without requiring detailed system properties. Lower t-FD values result in reduced peak flow, 
delayed peak arrival, and more pronounced late-time tailing in hydrographs. However, these FSVEs differ in 
the type of river systems and hydrograph behaviors they represent. For example, CtFSVE models a stable river 
system with consistent hydraulic conductivity and balanced overall inflow and outflow. In contrast, VtFSVE 
represents a dynamic system with temporally varying river and pore water interactions (leading to differences 
between inflow and outflow), where higher t-FD values reduce peak flow and tailing, reflecting reduced hydraulic 
conductivity in the riparian zone, which converts river water into pore water.

Physical implications: A comparison between the physical-based DDCM and the TtFSVE model revealed the 
physical meaning of the upscaling parameters. In the TtFSVE, lower t-FD values correspond to higher hydraulic 
conductivity in the riparian zone, enhancing water exchange between the river and riparian area. A smaller 
truncation parameter ( λ ) in the TtFSVE indicates greater riparian zone heterogeneity, shifting hydrograph tails 
from power-law to exponential decay.

Fig. 9.  Field application #2: (a) LSTM calibration and prediction (lines) versus observed daily streamflow 
(symbols) at Anxiang hydrological station. (b) LSTM multiplier model. In the legend, “LSTM-60 day” 
represents the LSTM model trained over 60 days (April 1 to May 30, 2021), and “LSTM-274 day” denotes the 
model with an extended 274-day training period (adding April 1 to October 31, 2022).

 

Scientific Reports |        (2025) 15:39306 18| https://doi.org/10.1038/s41598-025-23061-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Field applications: The TtFSVE accurately simulates flood hydrographs, such as those at the River Wyre, UK, 
even without recharge data. For river network flows, CtFSVE outperforms traditional SVE in simulating flood 
hydrographs, as shown at the Songzi River, China, offering a simpler and more effective model. CtFSVE also 
outperforms the LSTM-based machine learning model by providing more accurate hydrodynamic simulations 
in complex river networks, especially in data-sparse conditions, due to its strong physical basis and direct 
parameter calibration. It should be noted that, although the fractional SVEs demonstrate high simulation 
accuracy and require fewer empirical parameters compared to traditional storage models, main parameters—
such as the fractional derivative order and truncation coefficient - must currently be fitted for each scenario. At 
present, it remains challenging to derive these fractional parameters directly from physical field observations 
without calibration.

Overall, the CtFSVE, which adds only one parameter (t-FD) to the classical SVE, is recommended for its 
accurate hydrological representation and ease of practical applications.

Data availability
The River Wyre and Songzi River data, model results, and processing code are available online in ​h​t​t​p​s​:​/​/​f​i​g​s​h​a​r​
e​.​c​o​m​/​s​/​7​9​c​0​6​1​7​f​6​1​b​6​8​5​3​3​4​8​9​a​​​​​. The LSTM model code and related materials are publicly available on GitHub 
at: ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​D​u​a​l​E​​a​r​t​h​/​​f​r​a​c​t​i​​o​n​a​l​_​s​​t​_​v​e​n​a​​n​t​_​l​s​t​m and archived with a DOI at: ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​2​8​
1​/​z​e​n​o​d​o​.​1​5​8​3​8​5​5​6​​​​​.​​
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