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Abstract This paper is derived from a keynote talk given at the Google's 2020 Flood Forecasting Meets
Machine Learning Workshop. Recent experiments applying deep learning to rainfall-runoff simulation
indicate that there is significantly more information in large-scale hydrological data sets than hydrologists
have been able to translate into theory or models. While there is a growing interest in machine learning in
the hydrological sciences community, in many ways, our community still holds deeply subjective and
nonevidence-based preferences for models based on a certain type of “process understanding” that has
historically not translated into accurate theory, models, or predictions. This commentary is a call to action
for the hydrology community to focus on developing a quantitative understanding of where and when
hydrological process understanding is valuable in a modeling discipline increasingly dominated by machine
learning. We offer some potential perspectives and preliminary examples about how this might be
accomplished.

1. Beven's Clouds

On April 27, 1900 William Thomson (Lord Kelvin) gave his “Two Clouds” speech (“Nineteenth-Century
Clouds over the Dynamical Theory of Heat and Light”) at the Royal Institution, in which he argued that
“The beauty and clearness of the dynamical theory, which asserts heat and light to be modes of motion, is
at present obscured by two clouds.” The two open problems in physics that Kelvin referred to were the
failure of the Michelson-Morley experiment to detect the luminous ether (“how could the earth move
through an elastic solid, such as essentially is the luminiferous ether?”), and the ultraviolet paradox
(“the Maxwell-Boltzmann doctrine regarding the partition of energy”). Within a decade, Einstein had
proposed fundamentally novel insights that led to two paradigm shifts that define modern physics to this
day—the transformation of these two “clouds” into relativity and quantum mechanics.

In 1987, Keith Beven gave what might be considered hydrology's version of the Two Clouds speech at a
symposium of the International Association of Hydrological Sciences (IAHS) (Beven, 1987). He took a
perspective inspired by Thomas Kuhn's theory of scientific revolutions (Kuhn, 1962) to argue that “[t]he
extension of laboratory scale theory to the catchment scale is unjustified and that a radical change in
theoretical structure (a new paradigm) will be required before any major advance can be made in [predicting
catchment-scale rainfall-runoff responses].” He proposed that two things would be necessary to push the
field of surface hydrology into a new period of “normal science”: (i) scale-relevant theories of watersheds
(“[h]ydrology in the future will require a macroscale theory that deals explicitly with the problems posed
by spatial integration of heterogeneous nonlinear interacting processes”) and (ii) uncertainty quantification
(“[s]uch a theory will be inherently stochastic and will deal with the value of observations and qualitative
knowledge in reducing predictive uncertainty.”)

Unfortunately, hydrology has not had its Einstein (with all due respect to Einstein, 1926, 1950). Nine decades
from the establishment of the Hydrology section of the American Geophysical Union and after more than a
half-century of computer-based hydrological modeling (Crawford & Burges, 2004), Bloschl et al. (2019) listed

as one of the 23 “Unsolved Problems in Hydrology”: “what are the hydrologic laws at the catchment scale
and how do they change with scale?”
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Figure 1. Results from Kratzert et al. (2019) showing the empirical and cumulative distributions of model performance
(Nash Sutcliffe Efficiencies) over a 15-year test period in 531 CAMELS catchments. SAC-SMA is the Sacramento Soil
Moisture Accounting model, NWM is the National Water Model Reanalysis, and LSTMs are Long Short-Term Memory
networks (a type of deep learning architecture). The PUB LSTM was trained on data from out-of-sample catchments,
whereas the Regional LSTM was trined on data from all catchments.

2. Tilting at Windmills

There are several potential reasons why the search for scale-relevant theories in hydrology has been unsuc-
cessful, but lack of effort is not one of them (e.g., Beven, 2006b; Bloschl & Sivapalan, 1995; Dooge, 1986;
Peters-Lidard et al., 2017; Sivapalan, 2006). One potential reason is simply that there might be no
scale-relevant theories to find—it is possible that macroscale watershed behaviors are dominated by hetero-
geneity, meaning that there is little consistency across different basins. As summarized by Hrachowitz
et al. (2013), “Beven (2000) highlighted the varying importance of different hydrological processes, active
at different time scales in different catchments, and thereby emphasized uniqueness of place as a conse-
quence of the variability of nature.”

Alternatively, it could be the case that there are consistent macroscale patterns in hydrologic behaviors
across watersheds, but we lack sufficient observations (type, scale, and scope) to discover these similarities.
Again, as summarized by Hrachowitz et al. (2013), “[i]t was realized that increased physical model realism
(and complexity) requires both more input data and more model parameters, which are rarely available with
sufficient detail to account for catchment heterogeneity at the required resolution.”

Uniqueness of place and lack of data are, in our experience, two of the most common hypotheses about why
hydrology lacks both scale-relevant theories of watersheds. The alternative to such hypotheses is that these
theories could exist and that there is enough information in available observation data that we could have
discovered them, but that hydrologists simply have failed to do so. Prior to last year, it is fair to say that as
a community we did not know which of these reasons was the cause of our lack of success. However, with
the accelerating development of modern machine learning (ML) and deep learning (DL) in particular, we
know that the reason is the third one listed: watershed-scale theories (and models) could have been derived
from currently available observation data, but the hydrology community simply failed to do so.

The reason that we know this is because general models can be learned with DL. In a large sample study
using 30 years of data from several hundred basins in the continental United States, DL gave better daily
streamflow predictions on average in ungauged basins than traditional hydrology models when calibrated
to long data records in gauged basins (Kratzert et al., 2019). That study used benchmarks based on (i) a mod-
ern process-based model that was the product of several millions of dollars of development funding and (ii) a
conceptual model calibrated separately for each individual basin (Figure 1). These DL models have been
benchmarked against a number of conceptual and process models calibrated both locally and regionally
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Figure 2. Cumulative distributions of NSE values over the same 531 CAMELS basins used by Kratzert et al. (2019) from
a single model trained over all basins (single CONUS LSTM) versus separate models trained at each basin (per-basin
optimized LSTM).

using a variety of metrics and hydrological signatures (Kratzert et al., 2019, 2020). The fact that DL learned to
predict in unseen basins better than traditional models in gauged basins indicates that there exists interbasin
consistency that we should be able to exploit and develop into a watershed-scale theory of rainfall-runoff
behavior.

The problem of prediction in ungauged basins (PUB) (Hrachowitz et al., 2013; Sivapalan et al., 2003) is fun-
damentally a problem of extrapolation. Unlike both conceptual and process-based hydrology models and
also unlike shallow ML models that the hydrological science community has used in the past (e.g., Hsu
et al., 1995), DL models work better when trained on multiple catchments than when trained on individual
catchments (Figure 2; also see the more thorough data scaling analysis by Gauch et al., 2019). This means
that DL models learn relationships from a large sample of hydrological variability and are able to translate
those learned relationships into better predictions in any individual basin. In contrast, traditional hydrology
models are best when calibrated to individual basins, and performance always degrades when transferring to
other basins or when using regional calibration.

It is often claimed that one of the reasons hydrology models do not extrapolate well is because they are over
parameterized. Hrachowitz et al. (2013) reported that “several authors (Kirchner, 2006; McDonnell
et al., 2007; Wagener et al., 2007) (These references are apparently incorrect in the quoted manuscript.)
expanded on and strongly reiterated (Klemes, 1986b) arguments that models which perform adequately well
during calibration, but fail to predict the hydrological catchment response in validation, frequently do so
because they do not sufficiently represent the real-world processes that control the catchment response.
Rather, their often high number of parameters together with the limited number of constraints (including
both calibration objectives and calibration criteria) resulted in high degrees of freedom, i.e., poorly condi-
tioned parameter estimation problems, so that models “behaved more like mathematical marionettes.”
The problem is that this is not true. DL models generally have several orders of magnitude more degrees of
freedom than calibrated conceptual models, and it is this lack of regularization that allows them to learn gen-
eral and transferable hydrological relationships. Using DL as a benchmark demonstrates that it is the regu-
larization in the traditional models (i.e., the hydrological theory that the model structures are based on) that
is actually the cause of their lack of generality and transferability, rather than this being a problem of over-
parameterization. To summarize, this benchmarking between DL and traditional hydrology models demon-
strates three things. First that hydrologists could have developed general, scale-relevant theories of
watersheds from available data, but failed to do so. Second, that our understanding of why such theories
do not exist were incorrect—neither uniqueness of place nor lack of data was a valid reason for this failure.
Third, that our understanding of why our existing models perform poorly in extrapolation is also incorrect—
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this is not due to a lack of regularization or to overparameterization, but instead due to bad theory—the reg-
ularization (structure) that does exist in these models actively hurts us.

3. Overlapping Magisteria: Faith and Fact in Hydrology

The type of benchmarking result outlined in the previous section is not new—hydrologists have been bench-
marking ML models against both calibrated conceptual models and process-based models for at least a quar-
ter century, and it has always been the case that ML generally performs better (e.g., Abramowitz, 2005; Best
et al.,, 2015; Hsu et al., 1995; Nearing, 2013; Nearing et al., 2016, and many others). Todini (2007) framed the
issue like this: “physical process-oriented modellers have no confidence in the capabilities of data-driven
models outputs with their heavy dependence on training sets, while the more system
engineering-oriented modellers claim that data-driven models produce better forecasts than complex physi-
cally based models. The key phrases in this sentence are “confidence in” and “better forecasts”—one is a
statement of belief and one is a statement of fact.

As an applied science, hydrology is motivated by both epistm and techn (Parry, 2003). On one hand (techn),
hydrologists are tasked (and funded) to tackle acute societal needs for managing water resources and miti-
gating water-related hazards. On the other hand (epist), many of us are curiosity driven and operate under
the assumption that increased understanding of natural systems leads to increase predictability and control.
These two objectives cannot be cleanly separated. Whether motivated by societal relevance versus pure curi-
osity the fact remains that scientific hypotheses are tested by their ability to make accurate predictions.

Because of the success of DL, not just in making better hydrological predictions, but at fundamentally chan-
ging the nature of the watershed simulation problem, we see potential for a growing decoupling between
epistm and techn in hydrology. This worries us. One one side, we see growing interest from the ML commu-
nity to attack hydrological informatics problems with sometimes greater and sometimes lesser collaboration
with hydrologists. Given that their models generally work better, we might wonder how much they need us?
On the other hand, hydrologists have for decades dismissed the success of ML for hydrological prediction as
nonphysical (e.g., Bloschl et al., 2019; Kirchner, 2006; Sellars, 2018). The gap between epistm and techn will
grow unless we work actively to close it. We can do this by attacking two objectives: (1) learn how to use DL
to advance the science (i.e., extract hydrological insight from DL model), and (2) show value in hydrological
theory against a backdrop of successful DL (i.e., inject hydrological insight into DL models). Despite the
rapidly accelerating pace of ML and DL research in the hydrological sciences, we see relatively little explicit
and systematic work against these two problems (there is some, but not much). While the previous genera-
tion of hydrologists (e.g., Eagleson, 1991) made concerted effort toward making hydrology stand as a distinct
branch of geoscience, our generation must work to recouple the scientific and practical aspects of the disci-
pline. If we do not, it will be epistm that suffers, since at least some of the first-order problems that society
asks hydrologists to address can apparently be done with relatively little hydrological science.

Related to extracting insight from trained models, it is often said that ML is a black box. While there is—
arguably—some sense in which this is true, there is a much more important sense in which we should think
about DL models as containing complex, multilayered, structured information that is accessible if we choose
to query it. Recognizing this, our job is one of translation: the information we want is in the models, and we
must learn how to translate it into something that is human interpretable. In hydrology, new insights from
modeling studies sometimes come from probing models with various types of diagnostic tools (e.g., Martinez
& Gupta, 2010; Nearing et al., 2018; Ruddell et al., 2019; Yilmaz et al., 2008), many of which are equally
applicable to DL models. Examples of these tools are things like sensitivity analyses to understand (e.g., spa-
tiotemporal) input contributions (e.g., Sundararajan et al., 2017), counterfactuals to understand cause and
effect, (e.g., Pearl, 2013; Ribeiro et al., 2016), or DL-specific tools like embedding layers and feature layer ana-
lyses (e.g., Bianchi et al., 2020; Wang et al., 2017). It is also at least feasible to leverage advances in explain-
able AI (XAI; Samek, 2019) to help develop new scientific theory.

An example of looking for explainability in a trained model is in Figure 3. This figure shows the sensitivity of
a time series DL model to past inputs. The model learned to store winter precipitation and release this as run-
off when temperature and radiation increased in the spring. Kratzert et al. (2019) showed that a DL time ser-
ies model trained with inputs of precipitation and daily air temperature and targets of only daily streamflow
contained internal states that correlated with snow cover and soil water storage. They showed that these
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Input influence on April & May 2019 predictions at Spanish Creek at Keddie, CA (USGS 11402000)
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Figure 3. Sensitivity analysis using integrated gradients (Sundararajan et al., 2017) that shows the relative contributions to simulated streamflow during the
months of April-May (heavy black shading on the x-axis) from the time series of past inputs. The DL model learns to store winter precipitation and responds
to increasing temperature and solar radiation in the spring.
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Figure 4. Results from Kratzert et al. (2019) showing a matrix representing
catchment similarity as identified by a deep learning model. There are
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“snow” states were sensitive to inputs only when temperatures were below zero. None of this behavior was
prescribed a priori - the model learned hydrologically-relevant, interpretable behavior about latent
(unobserved) variables.

Looking at the transferability and catchment similarity issues discussed in section 2, Kratzert et al. (2019)
constructed a DL network with an embedded feature layer that quantified catchment similarity along a
number of learned dimensions (Figure 4). The features extracted from the trained network represent how
the DL model transformed observable catchment characteristics into a representation of similarity and
diversity in rainfall-runoff relationships. This matrix looks a little like noise, but it is a better representation
of catchment similarity than anything human scientists have so far been able to develop. If we want to
understand the information encoded in this matrix, then the job ahead of us is to translate this information
into a human-interpretable form. Kratzert et al. (2019) used dimensionality reduction to relate first-order
features in this similarity matrix with observable catchment characteristics and found that vegetation type
and seasonality were the dominant influences.

While ML has been used in hydrology for decades, the ability (at least partially due to computational
advances) to arrange shallow learning models into complex structures with feature layers that can learn
multiscale patterns opens the door to leveraging diverse (e.g., multicatchment) data in interpretable ways.
The idea that ML models are “black boxes” is more of a testament to a lack of inspection, rather than to a
limitation of the models themselves. It is worth noting that the DL models
used by Kratzert et al. (2019) were invented around the same time
(Hochreiter, 1991; Hochreiter & Schmidhuber, 1997) as some of the ear-
liest shallow neural network applications in hydrology (e.g., Hsu
0.8 et al.,, 1995). As a discipline, we have not done a great job of keeping pace

0.6 é with developments in ML.
0.4 g Perhaps more importantly, we can imagine doing hypothesis testing with
< DL. One of the major challenges with testing specific processes in complex
02 systems (like watersheds) is that this generally requires simulating the
whole system. This is the problem of holist underdetermination
300 400 500 (Duhem, 1954; Laudan, 1990), whereby auxiliary hypotheses confound
Basins

the ability to falsify specific hypothesis. Instead of extracting information
from trained DL models, we could put hydrological theory into these mod-
els and assess improvement (or otherwise). From an ML perspective, this

531 catchments (x-axis) and 256 model states (y-axis). Each state is activated ~ is a regularization problem, and common methods include things like

for any individual catchment to some degree in the range [0, 1], with 0
meaning that the state is not used for that particular catchment. Similar

(i) regularizing the loss function to penalize violations of physical

catchments share more of this state space and dissimilar catchments share principles like conservation, monotonicity, etc. (e.g., Nabian &

less.

Meidani, 2020), (ii) augmenting scientific models with DL structures
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Nearing & Gupta, 2015).

Hypothesis testing is an example of how we cannot really decouple mod-
eling from science, or techn from epistm. In all versions of the scientific

tions with predictions, and predictions must come from a model.
Cartwright and McMullin (1984) argued that phenomenological laws—
not theoretical laws—are the only thing that can actually be tested. The
results discussed in section 2 can be interpreted as a hypothesis test that
compares the total information content of theory as encoded into hydrolo-
gical models relative to a null hypothesis derived from data (Nearing

et al., 2020), but these experiments do not take the next step and test

A\

Complexity specific (biogeo)physical hypotheses by embedding them as constraints

///////// Analytical treatment
m Statistical treatment

into DL models.

4. Known Unknowns

Figure 5. Recreation of an illustration that Dooge (1986) borrowed from  The second “cloud” in Beven (1987) speech was uncertainty. There has

Weinberg (1975) to show different types of successful theories in science.
Watersheds arguably live in the area of organized complexity, where the
complexity (heterogeneity) is at a similar scale to the randomness (lack of

information).

been an enormous amount of attention paid to this topic in the hydrologi-
cal sciences (e.g., Beven, 2006a, 2009, 2016; Beven & Binley, 2014; Beven
et al., 2007, 2008, 2011, 2012; Clark et al., 2011; Kumar, 2011; Mantovan
& Todini, 2006; Montanari, 2007; Montanari & Koutsoyiannis, 2012;
Nearing, 2014; Nearing & Gupta, 2018; Pappenberger & Beven, 2006; Renard et al., 2010; Stedinger
et al., 2008; Todini & Mantovan, 2007; Vrugt et al., 2009); however, we have not had a major breakthrough
that led to a paradigm shift. We have suggested previously (Nearing et al., 2016) that the uncertainty litera-
ture in hydrology is somewhat detached from the discussion about uncertainty that is taking place in the lar-
ger academic (science and philosophy) communities. However, irrespective of that opinion, our community
has not developed the stochastic theory of watersheds that Beven (1987) anticipated.

Dooge (1986) offered a discussion about why finding scale-relevant laws is difficult in many branches of
science. His argument was that there are two basic categories of scientific theory: mechanistic and aggregate.
In the former—mechanistic theories—we track properties (e.g., position and velocity) of individual compo-
nents of a system, and the resulting model is usually expressed as a system of partial differential equations
(PDESs). In the latter—aggregate theories—we rely on ergodic properties like the law of large numbers to
derive consistent statistical approximations (e.g., temperature and density) at scales that are much larger
than the individual components of a system. The prototypical example of a mechanistic-type theory is
Newton's laws, and the prototypical example of an aggregate-type theory is thermodynamics. Dooge bor-
rowed the image in Figure 5 from Weinberg (1975) to illustrate this dichotomy—watersheds live in the mid-
dle area of organized complexity, where complexity (heterogeneity) is at a similar scale to randomness (lack
of information).

Beven imagined a hydrological theory that is fundamentally stochastic to account for heterogeneity. This is
different than how hydrologists typically treat uncertainty. Typical modeling approaches are mechanistic
and treat a lack of complete information by adding additional (usually probabilistic) structure to a modeling
problem. What we mean by this is that our basic hydrologic theories are largely deterministic, and we repre-
sent lack of complete information by adding distributions on top of model inputs, structures, and predic-
tions. This is true even for models based on stochastic PDEs, which necessarily add a distributional
component to the structural equation(s). Intuitively, it seems odd that we add more structure to a problem
to represent a lack of information. Beven's (1987) view of hydrologic theory is compelling in the sense that
it would be preferable to have a theory of watersheds that is itself an aggregate-type theory, since at least a
significant portion of the variability and complexity in watershed behaviors are due to both landscape and
process heterogeneity.
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Figure 6. Mixture density weights (6 kernels) predicted by a deep learning model (top) as compared with the
corresponding observed hydrograph (bottom). The mixture density weights vary in hydrologically relevant ways;
i.e., as a function of peaks (red) and recessions (blue).

ML offers something similar to this in a straightforward way. Instead of predicting the quantities of interest
directly, we can predict distributional representations (e.g., probabilistic and fuzzy) directly from input
data. This can be as simple as having the output of a DL model be the parameters of a parametric distribution
(e.g., a mixture density Bishop, 1994) or the quantiles of a nonparametric distribution (Taylor, 2000). An
example of this is shown in Figure 6, which shows the weights of a mixture density over streamflow pre-
dicted by a DL model. The training loss function in this case was a likelihood function, and the model did
not learn the mixture density parameters directly; instead, it learned how to predict these parameters from
dynamic inputs. This figure shows that the individual kernels of the mixture density respond in hydrologi-
cally relevant ways; for example, some of the mixture weights have a seasonal cycle, and some are active only
in rising or falling limbs of the hydrograph. It is important to understand that the DL model here maps
directly from inputs (atmospheric forcings and static basin attributes Addor et al., 2017) to predicted prob-
abilities, rather than sampling a priori probabilities over different model components. There is no need to
prescribe any a priori probabilities.

We find an important distinction between generative versus discriminative models (Nearing et al., 2013).
Generative models produce a joint distribution between targets, Y, and inputs, X, and then invert that distri-
bution to obtain conditional predictive probabilities p(Y1X). Discriminative models, on the other hand, map
directly onto conditional probabilities. Discriminative models avoid the need to assign any a priori probabil-
ities, and if we believe that we have some information about uncertainties associated with various inputs,
these uncertainties can always be used as additional inputs into the model.

Traditional hydrology models, on the other hand, are generative. We must first define all input distributions,
and our predicted distributions come from sampling those a priori prescribed distributions. When we use an
ensemble to represent uncertainty, for example, the hydrological model or family of models produces a joint
distribution between inputs and targets. Although we can sample the predictive conditional by simply look-
ing at one ensemble member, the distribution itself does not exist except as implied by the ensemble where
each ensemble member is a joint sample of (X, Y). The bottom line is that in a generative approach, the pre-
dicted probabilities are defined in advance by the input or sampling probabilities.

While aggregate theories exist for certain hydrological fluxes (e.g., Singh et al., 2003; Wang & Bras, 2011),
most operational models are based on mechanistic theories—hydrologists have not developed an aggregate
theory of watersheds. ML does not produce aggregate theories, but it does allow for discriminative modeling.

In addition to predicting probabilities directly, discriminative ML models can take any type of input, given
sufficient training data. This offers an alternative to inverse methods like data assimilation for integrating
ancillary data streams (Nearing et al., 2013). Feng et al. (2020), for example, used the discriminative
approach to integrate lagged streamflow values in a (deterministic) DL streamflow model. In principle, it
is feasible to add any type of input into one of these models as long as there is sufficient training data. We

NEARING ET AL.

7 of 15



o~
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2020WR028091

no longer need to prescribe the various input distributions directly; instead, these are learned (either impli-
citly or explicitly) by the DL model from all available data in a way that is dynamic (i.e., changes) in time and
place and under different hydrologic conditions.

5. Hydrology Beyond Streamflow

The hydrological sciences are diverse, and the discussion so far has been about catchment hydrology and
streamflow. Supposing the reader accepts the arguments we have laid out so far, it is worth asking whether
there are implications for other branches of the discipline. The answer is—of course—that we do not know.
On one hand, there are major differences between the challenges faced in catchment hydrology versus
groundwater or ecohydrology or hydrometeorology, but at the same time, it is difficult to overestimate the
impact of DL and Al throughout all types of human endeavors. In hydrometeorology, several studies have
shown that even very simple regression models produce better estimates of radiation partitioning than
process-based land surface models (Abramowitz, 2005; Best et al., 2015; Nearing et al., 2018). Fang and
Shen (2020) showed that DL can produce highly accurate soil moisture forecasts with remote sensing.
Hydrometeorology is similar to streamflow hydrology in that observations are (relatively) abundant from
satellites and mature sensor networks like FluxNet, etc. These fields are also similar in that the major sources
of uncertainty are due to spatial heterogeneity at intermediate scales.

In groundwater, which is often more data limited than surface hydrology, many of the standard methods
have close or direct analogs in ML already (e.g., Kriging is just Gaussian process regression Williams &
Rasmussen, 2006). It may be the case that there is less potential for a fundamentally new result. One recent
study reported that a physically based groundwater model outperformed several shallow ML models (Chen
etal., 2020). There have been some relatively small DL studies in groundwater hydrology (e.g., Mo et al., 2019;
Sahoo et al., 2017) that did not report transformative results.

It is hard to draw strong conclusions from the existing body of work. In all of these studies (including those
by the current authors but with the notable exception of Fang et al., 2018) is a lack of big data. ML does not
have the ability to learn multiscale hierarchical patterns in the same way as DL and therefore cannot lever-
age diversity in big data in the same way. After testing several shallow ML models, Chen et al. (2020) con-
cluded that “the generalization ability of numerical model is superior to the machine learning models
because of the inclusion of physical mechanism.”

The basic problem is a lack of real investment into this type of effort. There are major programs across hydro-
logic disciplines to build comprehensive multiscale models, e.g., groundwater (de Graaf et al., 2020), stream-
flow (Li et al., 2015, 2019), hydrometeorology (Rodell et al., 2004), and many others, but to our knowledge,
there is no similar effort to build global AT models. DL does not scale like traditional models—it works dif-
ferently on large data sets than small data sets—so small pilot studies do not tell us much.

There is no question that we are in a new information age and that modern data science techniques have
been transformative across scientific disciplines. The message that we would like to leave the reader with
is that hydrologists currently do not know what how transformative this technology will across our disci-
pline. We do not know this because we have not made a serious investment in Al-based hydrology. Our
major modeling centers continue to invest primarily in old technologies and old approaches. In the case
of streamflow hydrology, this has been a disaster. The point of this opinion piece is that there are clues that
maybe the balance of data and theory will not look like what hydrologists anticipate (e.g., references in
section 3).

6. Where the Sidewalk Ends

So what could we do about this? The following subsections outline what we see as both immediate needs for
expanding DL in hydrology, as well as some ideas about what the longer term future could look like.

6.1. Distributed Modeling

The first immediate need is for spatiotemporal DL models in all areas of hydrology. We simply just need to
make serious investments across the discipline to gather the data that each community has—across regions
and countries, to the extent possible—and make a serious attempt to develop state-of-the-art AT models.
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Figure 7. A time-recurrent deep learning network that is architecturally
constrained to conserve mass, energy, and/or momentum. Uy is
time-dependent inputs, Y; is time-dependent outputs, and X; is a vector of N
memory states in the network; & represents a set of N L1-normalized
sigmoid activation functions that produce a set of real values in [0, 1] that
sum to unity. These are scaled by the conserved quantities (in the inputs
and states) so that the total sum of the time history of inputs plus outputs is
always equal to the total sum of the system state. There are three sets of
“gates” in this network—an input gate that moves mass (energy,
momentum) from inputs to states, a reshuffling gate that moves mass
(energy, momentum) between states during each individual time step, and
an output gate that moves mass (energy, momentum) from states to outputs
at each time step.

#Q)«

We expect that first-order attempts at this type of project will look similar
to current models with some explicit spatiotemporal extent/resolution
and some number of latent (hidden) variables. Previously, we criticized
calls for hyper-resolution modeling, and while the race to higher density,
more-of-the-same type models does seems to be a particularly unthought-
ful idea, it is nevertheless the case that hydrological processes have both
spatial and temporal components. We expect that within the next 1-2
years, the community will develop several distributed DL watershed mod-
els (e.g., Moshe et al., 2020). There are various ways that we might incor-
porate a multitude of different types of spatiotemporal data into trained
models. DL allows for complex interactions between different feature
layers, and fine-tuning allows modelers to train individual components
of a model. We can imagine a model developed by training different fea-
ture layers—perhaps themselves multilayer DL models—and piecing
these together to represent theory-guided architectures. As an example,
we could imagine training a convolutional network to map from remote
sensing data like SMAP (Entekhabi et al., 2010) to root-zone soil moisture
by training directly on target data from in situ networks like the USDA
Soil Climate Analysis Network (Schaefer et al., 2007) and/or FluxNet
(Baldocchi et al., 2001). The weights of this trained convolutional layer(s)
could then be frozen, and the trained network then used as one (of many)

input feature layer(s) into an LSTM (or other time series model) for predicting streamflow (or evapotran-
spiration or groundwater recharge). In principle, input data streams could be integrated at arbitrary spatio-
temporal resolutions so that irregular convolutional networks (e.g., graph convolutions) could be used for

routing.

The details of this type of model will need to be worked out, but the potential for, and basic components and
principles of, a DL-based integrated hydrology model is relatively clear. There is no fundamental limitation
that precludes developing integrated DL hydrology models at multiple temporal and spatial scales. The ques-
tions that we anticipate are about what value will come from integrating different types of features and fea-
ture layers and about how we might pretrain various feature layers to account for different types and scales
of observational data in large, integrated models.

6.2. Theory-Informed ML

As mentioned in section 3, there is a feeling among hydrologists and Earth scientists that models without
explicit process representation might be unreliable under changing conditions. Although we do not know
if this is really true, one way to approach this is to integrate physical constraints or process-based theory into
DL models. The goal is to extract as much information as possible from a combination of theory and data.

This is not a new idea—Karpatne et al. (2017) called for theory-guided data science, which consists of efforts
to integrate scientific consistency into generalizable models. Notably, members of that same group later col-
laborated on development of a DL model that is architecturally constrained to not violate prescribed mono-
tonicity relationships (Daw et al., 2019).

A simple and general way to enforce conservation constraints (e.g., mass, energy, and momentum) in a DL
architecture is to L1-normalize a set of bounded (€ [0, 1]) activation functions and scale by the conserved
quantity. This concept can be integrated into almost any type of neural network architecture, including into
the long short-term memory networks used by Kratzert et al. (2019) and Kratzert et al. (2019). This concept is
illustrated in Figure 7, and the result is a model that learns nonlinear input-state-output relationships that
obey arbitrary and interacting conservation principles.

Another approach for directly combining process understanding with ML is to incorporate the ML models
inside of a dynamical systems model. A basic approach was outlined by Ghahramani and Roweis (1999),
where—effectively—an empirical model is trained on the analysis states resulting from data assimilation
(e.g., by a Kalman-type filter). We can generalize this idea as follows:

Suppose that we have a dynamical systems model that solves a set of PDEs:
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Difference between LSTM and SAC-SMA
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Figure 8. An illustration from Kratzert et al. (2019) that compares a deep learning model (LSTM) against a calibrated conceptual model (SAC-SMA) over 531
CAMELS basins. The deep learning model does better on average, but not in every catchment, indicating that there is at least potential to improve by
incorporating some of the conceptual constraints from SAC-SMA.
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where X is modeled system states, U is time-dependent boundary conditions, 6 are model parameters, and
function f(-) is the total divergence (inputs less outputs). A discrete-time approximate solution might then be

Xt :f*(Xt—h Ut7 6) (2)
We can augment the f*(-) state-transition function with a learned component, g*(), as follows:
Xe=f"(Xe-1, Up, 0)+8"(Xi -1, Uy, 9), (3)

where g*(+) is any ML model. As above, g*(+) can itself be probabilistic so that Equation 3 is a discrete-time
solution to a set of stochastic PDEs. The challenge is to learn the g*(-) function given that we cannot expect
to have direct observation pairs (X;, X, _ 1) of all system states to use for supervised learning. As an exam-
ple, Nearing and Gupta (2015) applied the data assimilation approach by Ghahramani and Roweis (1999)
to the HyMod conceptual rainfall runoff model, and Pelissier et al. (2020) applied a similar technique to
the Noah-MP land surface model for soil moisture accounting.

Another example of potential for theory-guided data science in hydrological workflows is for data assimila-
tion itself. Significant information loss often results from assigning the distributions and parameters of a
probability-based assimilation algorithm (Nearing et al., 2018), and many assimilation algorithms require
that the model and observation be in the same climatology (Kumar et al., 2012), meaning that these algo-
rithms only treat stochastic error. One potential way to mitigate these problems is to use ML to learn rela-
tionships between model states and assimilated observations (e.g., Kolassa et al., 2018). As an example of
this, Nearing (2013) derived the fixed form of the Kalman-type gain and its associated adjoint that results
from assimilating with a Gaussian process observation operator. We see theory-guided data science, and
more specifically, physics-informed ML, as a likely strategy for simultaneously leveraging what we do know
from scientific theory about catchment behavior with the now undeniable ability of DL for extracting pat-
terns and information directly from data. There is some indication that this might be useful: Figure 8 shows
a comparison between the performance of a DL model applied to CAMELS basins versus a calibrated con-
ceptual model. These data are from Kratzert et al. (2019), and the takeaway message is that while the DL
model is better overall, it is not better everywhere. Kratzert et al. (2019) could not find any relationship(s)
between observable catchment characteristics and the difference in performance between these two models,
but it is nevertheless apparent that there is at least the potential to improve by adding some elements of
hydrologic theory to the DL architecture.

6.3. Skip the Hydrologist

Clark et al. (2016) gave an account of the sources of uncertainty (information loss) in a hydrological model-
ing chain. These are things like uncertainty in meteorological forcings from global circulation models
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(GCMs), downscaling forcings to the watershed scale, errors in the hydrological model structure,
parameter uncertainty, etc. Each of these represents a step in a chain of information from the GCM
dynamical core (i.e., Navier-Stokes approximations and data assimilation) to streamflow or other
hydrological variables. Every step in this modeling chain introduces uncertainty. DL has the potential to
let us skip at least several steps in this type of modeling chain by developing relationships directly between
high-quality data sources.

Take as an example the largest source of hydrological error, which is typically precipitation data. This is true
whether we are using the output of weather or climate models, interpolated gauge data, or remote sensing
data from radar and/or satellites. The problem is exacerbated by downscaling. The major
precipitation-related uncertainty in a GCM is due to parameterization of subgrid cloud formation processes.
There have been recent successes using ML to parameterize cloud physics and cloud formation (e.g., Gentine
et al., 2018), which could help mitigate these issues to some extent, but we still have to feed these uncertain
precipitation fields into a hydrology model that is subject to both parameter and structural uncertainties.

We could think about the problem in a different way. The four-dimensional pressure, wind, and temperature
fields that result from Euler solutions in the dynamical cores of GCMs are relatively accurate, at least as
compared with the accuracy of parameterized precipitation fields. We could, in principle, use DL to extract
information directly from states of the dynamical core about terrestrial hydrological variables. For example,
we could in principle develop four-dimensional convolutions to regress directly from GCM fields and digital
elevation maps to pixel classifiers over satellite-derived maps of flood inundation and thereby skip sources of
information loss from (i) subgrid convection parameterizations, (ii) GCM downscaling, (ii) lack of
scale-relevant theories of watersheds, (iii) parameter equifinality, (iv) rating curves, etc. It is possible
(perhaps likely) that this type of model would give more accurate inundation forecasts at similar lead times
relative to state-of-the-art hydrology models, since this would skip uncertainties related to cloud physics
parameterizations, downscaling, watershed parameterizations, etc. All of these things could be learned
implicitly by a DL model.

The point is that DL offers at least the potential to make societally relevant hydrological forecasts without
any type of hydrological model or hydrological process understanding at all. Because DL allows for almost
arbitrarily complex relationships and has demonstrated to extrapolate well out of sample, it might be the
case that successful water resources and water hazard predictions might not require anything that looks
even like a simple hydrology model. This is all speculative, but the point is that the idea about hydrological
understanding being necessary for reliable forecasting discussed in section 3 may not be true even in the
most superficial sense. This is an extreme and hypothetical example, but one that is worth (1) trying
experimentally and (2) being aware of as we calibrate our expectations about the role of hydrological theory
and hydrological science in the context of big data and <L.

6.4. Observations and Benchmarks

Beven (2006b) proposed that the search for closure schemes at the watershed scale is the second most impor-
tant problem in the discipline, with the most important being to improve observation capabilities. We agree
completely. As was the case in 1987, the first and foremost job of hydrologists are and will continue to be
related to improving observational capacity. The approaches discussed in this article only increase the need
for observation data related to as many aspects of the water cycle as possible.

Shen et al. (2018) noted that past progress in the field of ML can be partially attributed to the culture of using
public data sets and benchmarking new methods against previous state of the art. There have been calls
for consistent practices related to hypothesis testing, model intercomparison, and model rejection
(e.g., Beven, 2018). While some of the philosophical counterarguments to this are compelling
(e.g., Baker, 2017; Nearing et al., 2016, 2020), without some community standard for benchmarking, it is dif-
ficult to track progress in the field in an objective way.

This means that we need two things. First are better centralized data repositories. The community is aware of
this (Gupta et al., 2014; Shen et al., 2018), and there are several such efforts happening in the field right now
(e.g., Addor et al., 2017; Hoffman et al., 2016; Newman et al., 2015). We expect that this issue will sort itself
out in the near future. Still, our opinion is that one of the best investments that could be made in the disci-
pline right now is to develop standardized and easily accessible big data repositories. The second thing we
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need is the willingness to use those data repositories. Just like in previous decades when the community
responded to calls for making uncertainty quantification required for every modeling study (Pappenberger
& Beven, 2006), we need a community standard that requires all new modeling papers to include
large-scale benchmarking against standard, centralized data sets.

Hydrological modeling is currently a field of ivory towers where legacy and affiliation guide the choice of
model (Addor & Melsen, 2019) as opposed to empirical rigor (Beven, 2018). Different modeling groups largely
work on their own models, and while there have been ad hoc intercomparisons (e.g., Best et al., 2015; van den
Hurk et al., 2011), this is not routine, and the hydrology community does not keep a list of current perfor-
mance scores on standard test problems, as is standard in other communities (e.g., CMIP and ML-Perf).

7. A White Whale

During the community contribution phase of the IAHS “Unsolved Problems in Hydrology” effort (Bloschl
et al., 2019), one of the suggested questions was: “Does Machine Learning have a real role in hydrological
modeling?” In contrast, we suggest that the existential question for our discipline right now is: “What role
will hydrological science play in the age of machine learning?” van den Hurk et al. (2011) challenged that
“it must be demonstrated that the model physics actually adds information to the prediction system.” This
is exactly the question that needs to be answered in order to understand how and where hydrological theory
has a role to play in a world dominated by data. We see at least potential for DL to help address this by allow-
ing us to decouple different parts of hydrological theory while still retaining scale-relevant predictive systems
learned (partially) from data.

Very likely, the future of hydrology will be a mix of AI and physics-based approaches, but we have a hard
time envisioning a future where transformative data science approaches like DL become simply another tool
in the hydrologist's toolbox. We see it as much more likely that hydrological domain knowledge will become
an integral part of guiding and developing fundamentally Al-based systems and analyses (e.g., section 6.2).

Hydrology has roots—at least in part—as a branch of civil engineering. Klemes (1986a) argued that “prac-
tices of bad science in hydrology cannot be blamed on engineers and other decision makers who ‘need num-
bers.” For if these numbers are not to be based on sound hydrologic science but only on manipulations of
arbitrary assumptions and concepts, hydrologists are not needed.” The situation has not changed much in
the 34 years since that was written: our ability to extract numbers (predictions) from data is advancing
rapidly, but we have not improved very much our ability to make predictions from anything resembling
hydrologic theory. While our models become increasingly complex, a well-calibrated Sacramento model is
still one of the best in discipline.

The reason that we think this is an existential challenge is because we see hydrological science becoming
increasingly decoupled from state-of-the-art hydrological information systems. Major development groups
at governmental institutions internationally continue to dedicate the large majority of effort to the tradi-
tional models that have never benchmarked well against ML (e.g., Abramowitz, 2005; Best et al., 2015;
Kratzert et al., 2019; Nearing et al., 2018). As far as we can tell, these models are dead on arrival. Barring
some major fundamental theoretical discovery or innovation, there is essentially no chance that any incre-
mental advancements will allow these models to catch up to the state-of-the-art hydrological predictions.
Simultaneously, there has not been any serious or systematic investment into Al-based hydrology at a mean-
ingful scale, and from what we can see (e.g., see section 3), there is still strong resistance in the hydrology
community toward adopting these approaches in a serious and fundamental way. Coupled with the fact that
DL experiments demonstrate that hydrologists lack even a basic understanding of why their models fail
(section 2), this causes us to worry.

Our fear is that if the hydrological sciences community refuses to make a serious investment into the tech-
nology that works, then someone else will. This will mean a further decoupling between hydrological
science (such as it is) and the societal value that this science is supposed to support. To be clear, the current
authors do not want to see that happen, but we are not impressed with the reaction we are seeing in the com-
munity. Our message in this opinion piece is to stop assuming that the world needs our theories and exper-
tise and start demonstrating—quantitatively and systematically—the value of individual components of that
expertise against the backdrop of a growing importance of big data.
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