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1. Introduction 

There is an understanding in the hydrological sciences community that physical realism is necessary for 
providing hydrological forecasts under changing conditions (Blöschl et al., 2019; Clark et al., 2016; Milly et 
al., 2008). At present, however, machine learning (ML) generally provides the best estimates of most 
hydrological states and fluxes, even in extrapolation (e.g., Best et al., 2015; Kratzert et al., 2019a,b; Nearing et 
al., 2018). A notable example of this was provided by Kratzert et al. (2019a), who showed that Long Short 
Term Memory networks (LSTMs) produce, on average, better predictions in basins that did not supply training 
data (effectively ungaged basins) than a conceptual model well-calibrated to gauge data in individual basins 
(gaged basins). This is significant in that the 2003-2012 decadal problem of the International Association of 
Hydrological Sciences (IAHS) was `Prediction in Ungauged Basins' (PUB) (Hrachowitz et al., 2013). Prior to 
Kratzert et al. (2019a), best practices for PUB required extensive catchment-specific investment (Blöschl, 
2016), which is infeasible at large scales (e.g., regional, continental, global).  

The purpose of this talk is to suggest ways that hydrological forecasting efforts could begin to bridge the 
gap between the reliability we typically associate with models based on physical understanding and the reality 
that data-driven models out-perform process-driven models. We give examples of two ways to approach this 
problem: (i) explainable ML and (ii) physics-informed ML. 

2.  Explainable ML under Climate Nonstationarity 

The first project discussed in this talk is an example of constructing and deconstructing a deep learning 
model to gain better understanding of how it learns to organize information. We did this in the context of 
predicting streamflow in catchments under dynamic climate. We used LSTMs because they are conceptually 
similar to traditional dynamical systems models, in that they have a memory state that is updated in time through 
a set of input-state-output relationships.   

Our LSTM took three types of inputs, which are described in more detail in Table 1 by Kratzert et al. 
(2019a): (1) daily meteorological forcings, (2) static catchment attributes related to soil, vegetation, geology, 
and topography parameters, and (3) dynamic climate statistics related to annual precipitation, potential 
evaporation, temperature, aridity, etc.  Dynamic climate indexes were calculated on the 365 days just previous 
to each daily streamflow prediction. Static catchment attributes and climate statistics were input to an 
embedding network consisting of three fully connected layers with 35, 35, and 30 nodes, respectively. The 30 
outputs from this embedding network at each timestep were concatenated with daily meteorological forcings 
and input to the LSTM.  
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The resulting LSTM was trained using 
the NCAR CAMELS data set (Addor et al., 
2017; Newman et al., 2015) with 15-year 
training (1981-1995) and test (1996-2010) 
periods. This LSTM was trained and tested 
to develop a single continental-scale model 
using all of the data from 447 catchments 
over CONUS. We used the same 
hyperparameters, training procedure, and 
benchmark models as Kratzert et al. 
(2019b), and additionally benchmarked 
against two LSTMs with static climate 
indexes: one using climate indexes 
calculated over the training period and one 
using climate indexes calculated over the 
test period.  

Cumulative density functions of the 
Nash Sutcliffe Efficiencies (NSE) obtained 
for the 447 separate catchments over the 
test period are shown in Fig. 1. LSTMs 
performed better than all of the standard 
hydrology models, except for the LSTM 
that used static climate indexes calculated 
over the test period (green line). This 
demonstrates that we cannot simply change 
the climate attributes in a basin (e.g., as 
climate in that basin evolves) if the model 
is trained assuming static climate in each 
basin.  

Figure 2 shows that the dynamic-
climate LSTM gives very different 
hydrographs as climate changes. This 
figure was generated by putting the 
meteorological forcings from a single 
water year (Oct 2014 – Nov 2015) through 
the LSTM with the background climate 
from different years (2000–2014). The 
only thing that is variable in these runs is 
the climate index. Notice, for example, that 
the peak flow around day 180 of the water 
year changes drastically under different 
climates. Figures 1 and 2 taken together 
show that we must directly account (during 
model training) for catchment-specific variable climate. 

The reason that the LSTM is able to extrapolate to different catchments and to different climates is that it 
effectively ‘sees everything’.  A single model trained on all available data from all catchments has a wide 
variety of training experience to draw from, and thereby extrapolate into, as the conditions in any given 
catchment change.  Kratzert et al. (2019b) showed that the LSTM learned a representation of catchment 
similarity and used this to model rainfall-runoff behavior in similar catchments using shared parts of the network 
structure.  

Fig. 1  NSE CDFs over 447 CAMELS basins of several hydrology 
models. The dynamic climate LSTM from Fig. 2 is in blue. All 
curves are for the test period. 

 

Fig. 2  Hydrographs in a single catchment due to putting the 2014 
(representative) water-year forcings through a trained LSTM 
with different climate indexes. The only source of variability 
along the y-axis (Day of 15-year Validation Period) are the 
annual climate indexes. Notice that the peak flows in this 
catchment (around DOY 180) are highly responsive to 
background climate. 
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We can do the same thing under 
changing climate.  Figure 3 is a still-frame 
from a movie that reduces the portion of the 
LSTM gate structure that reacts to the 
embedding network (which is variable only 
due to climate indexes) down to first 
principal components. Proximity in this 
space indicates catchment similarity, and as 
local climates change, individual 
catchments move in this space and become 
more or less hydro-climatically ‘similar’ to 
others. 

3.  An example of combining process 
modeling with machine learning 

There are several possible ways to 
combine physics with ML. This talk 
presents an example of integrating an ML 
kernel into a fully developed process-based 
model. We used Noah-MP, which is the 
land surface component of the NWS 
National Water Model.  

A basic approach to integrating ML 
into a process model was described by 
Ghahramani and Roweis (1998), whereby 
the ML model is trained on the analysis 
states resulting from data assimilation (e.g., 
by a Kalman-type filter). We can 
generalize that idea as follows. Suppose 
that we have a dynamical systems model 
that solves a set of PDEs:  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑑𝑑,𝑈𝑈,𝜃𝜃) 

where X are model states, U are boundary conditions, θ are model parameters, and f(⋅) is the total divergence. 
A discrete-time solution is: 

𝑑𝑑𝑡𝑡 = 𝑓𝑓∗(𝑑𝑑𝑡𝑡−1,𝑈𝑈𝑡𝑡 ,𝜃𝜃). 

We can then augment the state transition function f* (⋅) with a ML component as follows: 

𝑑𝑑𝑡𝑡 = 𝑓𝑓∗(𝑑𝑑𝑡𝑡−1,𝑈𝑈𝑡𝑡 ,𝜃𝜃) + 𝑔𝑔(𝑑𝑑𝑡𝑡−1,𝑈𝑈𝑡𝑡 ,𝜃𝜃) 

where g(⋅) is an ML model. The challenge is to train g(⋅) given that we don’t have direct access to all of the 
system states. Nearing & Gupta (2015) used an ensemble Kalman filter to derive analysis states from a 
calibrated rainfall runoff model, and then trained a Gaussian process (Williams & Rasmussen, 2006) to use as 
g(⋅). 

Here we applied a similar technique to the soil moisture state of Noah-MP using data from 11 FluxNet 
towers globally. We used only FluxNet sites and years of data having almost complete ½-hourly surface soil 
moisture data records, so that data assimilation was not necessary.  Figure 4 shows the improvement to surface 
soil moisture estimates over the standalone Noah-MP model in individual data-years at each of the 10 FluxNet 
sites. These results were obtained using k-fold cross-validation, so that only out-of-sample data is shown in this 

Fig. 3  A low-dimensional representation of catchment similarity as 
learned by the LSTM based on static catchment attributes and 
annual climate indexes. Ten of 447 CAMELS catchments are 
highlighted in color. Basins with close proximity in this space 
are treated as having similar rainfall-runoff processes by the 
LSTM. This is one time slice in the test period, and this learned 
representation of catchment similarity will evolve in time as 
local climate changes in each catchment. The LSTM is 
effectively interpolating in this space to make new predictions 
under dynamic conditions. 
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figure. Prior to training and testing the ML 
integration, Noah-MP was calibrated 
against soil moisture data at each site so 
that the error being corrected here is model 
structural error.  

Almost all out-of-sample simulations 
were improved as compared to a calibrated 
Noah-MP model, indicating potential to 
improve systematic structural errors in 
Noah-MP by integrating an ML 
component. 
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