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Abstract

Climate change-driven weather disasters are rapidly increasing in both frequency
and magnitude [18]. Floods are the most damaging of these disasters, with ap-
proximately 1.46 billion people exposed to inundation depths of over 0.15m, a
significant life and livelihood risk [12]. Accurate knowledge of flood-extent for
ongoing and historical events facilitates climate adaptation in flood-prone commu-
nities by enabling near real-time disaster monitoring to support planning, response,
and relief during these extreme events. Satellite observations can be used to derive
flood-extent maps directly; however, these observations are impeded by cloud and
canopy cover, and can be very infrequent and hence miss the flood completely. In
contrast, physically-based inundation models can produce spatially complete event
maps but suffer from high uncertainty if not frequently calibrated with expensive
land and infrastructure surveys [17, 19]. In this study, we propose a deep learn-
ing approach to reproduce satellite-observed fractional flood-extent maps given
dynamic state variables from hydrologic models, fusing information contained
within the states with direct observations from satellites. Our model has an hourly
temporal resolution, contains no cloud-gaps, and generalizes to watersheds across
the continental United States with a 6% error on held-out areas that never flooded
before. We further demonstrate through a case study in Houston, Texas that our
model can distinguish tropical cyclones that caused flooding from those that did
not within two days of landfall, thereby providing a reliable source for flood-extent
maps that can be used by disaster monitoring services.

1 Introduction

Floods caused losses of USD 20 billion globally in 2021 alone, and the relative property loss
caused by floods are highest in places with social vulnerability [16], further exacerbating economic
disparities. Effective disaster response can mitigate the aftermath of widespread flooding; however,
flood managers and disaster response personnel require timely and accurate maps of the maximum or
"peak" spatial inundation (flood-extent maps) to mount an appropriate response.

Previous work mapping floods and flood risk falls broadly in two categories: physically-based
hydraulic models and satellite-observed segmentation models. Hydraulic models use physical
equations that define relationships between streamflow, elevation, slope, soil-type, and human
infrastructure to produce flood depth and extent maps. To build high-quality hydraulic flood models
however, requires engineering-grade models that capture geographical and infrastructure conditions,
a complex and expensive process that is not accessible to resource-limited communities in short
time frames. Freely available hydraulic models exist and can be used to generate flood maps, but
suffer from oversimplifications such as excluding precipitation-driven or pluvial flooding [4, 20],
that reduces the accuracy of their outputs. Publicly available optical and active microwave satellite
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imagery enables model-free flood monitoring and can be used to generate flood-extent maps with
machine learning methods. However, cloud and canopy cover consistently limit observations during
rainfall-driven disasters for optical satellites, and the 6-12 day revisit times of active microwave
(cloud-piercing) satellites mean only slow-moving floods can be reliably captured [22].

Emerging studies have leveraged both observed and modeled signals to detect floods, with limitations
in geographic generalization and applicability. Dasgupta et al. [2] used coarse soil moisture and
precipitation observations to predict inundation given a pre-flood optical satellite image in a case
study a single region of interest. However, in a feature analysis they showed no impact of flood
forcing information, a counterintuitive result that indicates overfitting to the information in a single
region of interest (ROI), where flooding primarily occurred in low-lying areas adjacent to a river.
Furthermore, their model requires cloud-free pre-flood and during-flood images to train, which can be
impractical to collect for fast-moving or rain-driven events. Guo et al. [5] trained an image translation
network to convert static terrain representations to water depth images given a hyetograph. While
their results are promising, their study was limited to 18 events in a single catchment, and all training
data was simulated using hydraulic models. Other recent works have trained networks to produce the
outputs of a hydraulic model given a similar set of inputs; however, these studies have been limited to
synthetic flooding scenarios [6, 21], single and/or small study areas [6, 9, 21], or riverine (fluvial)
flooding only [6].

Contribution In this study, we train a fully convolutional encoder-decoder network on hydrologic
model states and auxiliary static layers to produce fractional water extent maps (henceforth referred
to as "flood maps") similar to those derived directly from satellite observations. To our knowledge,
this is the first work that directly uses hydrologic states and satellite observed water to train a single
network in a large, multi-watershed study. Our approach leverages the robustness and scalability of
satellite observations with the spatial completeness of physically based inundation models in order to
produce hourly, gap-free flood maps, which can enable all communities in the continental United
States to respond and adapt to the effects of increasingly prevalent flooding.

2 Methods

We trained a fully convolutional encoder-decoder network to regress the fractional water in a 2km
x 2km pixel (a grid cell) given two dynamic input layers and three static input layers. Architecture
details are provided in Appendix A.1.

Target flood maps We selected 6865 satellite observations from 189 flood events from 2000-2021 in
the contiguous United States (CONUS) that have been identified by the Dartmouth Flood Observatory
[1]. Our selection from 21, 017 candidate images was based on how much flood water and how many
unobstructed (cloud-free) pixels an image contained. As a training target, we used fractional water
predictions from a proprietary water segmentation model, designed to regress fractional water in a
250m x 250m grid cell given a satellite observation.

Dynamic Inputs For each satellite observation, we extract two corresponding hydrologic state
variables from the U.S. National Water Model (NWM) [14]. First, a 1km resolution volumetric soil
moisture taken from the NWM land surface component (NOAH-MP), defined as a ratio of water
volume to soil volume. The second hydrologic state we use is a 250m resolution terrain router,
representing a depth of water ponded on the surface. The terrain router uses a physical equation to
route overland flow across the land surface based on a digital elevation model (DEM). Here it is
important to note that the dynamics of flooding are more complex than described with the terrain
router. It is possible for a lot of routing to occur on a grid cell without flooding occurring, due
to factors including evaporation, soil transmission, and human-made flood infrastructure. NWM
dynamic data sources are available hourly. In order to capture temporal information about the flood
dynamics, we aggregate the previous 72 hours of terrain routing and soil moisture, and provide these
as inputs to the model.

Static Inputs For each satellite observation we also extracted three static layers, to provide the model
with context about locations that may be more or less prone to flood. We use two DEM-derived
layers from Hydrosheds [8]: flow direction, describing the direction of water flow as one of eight
equidistant radians, and a flow accumulation layer, describing the number of upstream grid cells. Both

2



(a) Prediction (b) Target (c) GSW

Figure 1: Held-out fractional water prediction of a flood event along the Mississippi River

Hydrosheds layers are provided at 15 arcseconds resolution. Finally, we also use a 30m resolution
global surface water layer derived from the the Joint Research Council Global Surface Water data
v1.1 (GSW) [11], which describes the frequency of occurrence of water on a grid cell.

Splits We split 6865 examples into three cross-validation folds and a single test set. Splits were made
temporally and assessed for geographic balance afterwards. More details are provided in Appendix
A.2.

3 Results and Discussion

We measure Mean Squared Error (MSE) across cross-validation folds, excluding true-negative pixels
(dry land defined as y < 0.02 and ŷ < 0.02) in this calculation to avoid an artificial suppression
of the error, as most pixels in the dataset do not contain water. We find that among pixels where
GSW ∈ [0, 0.02] (never-flooded pixels), the network has a MSE of 4.0e−3± 1.9e−4, corresponding
to roughly 6% (0.25km2) error per pixel. Where GSW ∈ [0.02, 0.30] (flooded-before pixels), the
network obtains a MSE of 4.8e−3± 4.1e−4 (roughly 7% or 0.27km2 error per pixel). Evaluating on
these subgroups demonstrates that the network is not reproducing a trivial solution by re-producing
the GSW input. An example of a held-out prediction is provided in Fig. 1 demonstrates the network’s
ability to make predictions that align with a direct observation.

To determine whether the network can provide actionable flood evidence, we evaluated whether the
network can separate hurricanes and storms in the Houston area based on whether or not they caused
flooding within the city. We select five events that struck Houston between 2005-2021: three that
caused flooding in the central Houston (Hurricane Harvey, Storms Nicholas and Imelda), and two
that did not (Hurricane Laura, Storm Rita). This flood assessment was based on news reports. None
of these events were part of the training dataset.

We used the network to make hourly predictions of fractional water within a 30km x 30km region
of interest (ROI) centered on Houston. Then, we use the input GSW layer to exclude permanent
water grid cells (GSW> 0.30) to compute the Fractional Flooded Area (FFA) at each hour of the ROI
throughout the event (Fig. 2). Additionally, we visualize the predicted water extent for Hurricanes
Laura and Harvey on their respective peak days (Fig. 3).

The Houston case study demonstrates that this model can detect flooding within one day of a tropical
cyclone making landfall. This means that as storms evolve, users can understand where floods are
happening in order to appropriately direct emergency resources. In contrast, through a study of five
flood events over Houston, we found that it took, on average, 5-13 days to obtain a cloud-free view of
65% of Houston using the MODIS Surface Reflectance product, which has the fastest revisit time
among public monitoring satellites of 0.5 days. Instead of waiting for days for an unimpeded satellite
observation, and potentially missing damaging floods that recede in less than five days, this model
can be used to aid response with localized near real-time flood maps. And unlike geographic data
points obtained through scraping social media, such as Twitter, that may be completely unavailable
due to power outages during storms, or unreliable in less populated areas, our model can be run
independently by response teams outside of the affected region.
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Figure 2: Predicted Fractional Flooded Area for five named storms that struck the Houston area.
Harvey, Nicholas, and Imelda caused flood damage, whereas Laura and Rita did not.

(a) Max water prediction:
Hurricane Harvey

(b) Max water prediction:
Hurricane Laura

Figure 3: Fractional water predicted during a) Hurricane Harvey and b) Hurricane Laura on their
respective peak days. The yellow box indicates the Houston ROI.

4 Conclusion

We demonstrate a fractional water segmentation model based on hydraulic state variables and static
geographic layers, and showed that this model can be used to predict satellite observed flood maps
when no such observation is available, as is often the case during flood disasters. By reproducing
satellite observations, our model is able to scale to multiple locations and multiple resolutions,
overcoming limitations of physically based models. Future work should explore integrating globally-
available data sources, so that the model can be run outside of the US. Additionally, future validation
should consider proxy mechanisms to validate the performance of the model during events for which
no observation is available, either by comparing to flood-risk maps, physically modelled flood maps,
or flood insurance claims. These recommendations are suggested with the ultimate goal of providing
robust, gap-free flood maps that can be reliably used by emergency response teams to direct resources
during flood disasters. This work presents a scientifically novel step forward in that direction, and
hopefully motivates future solutions that leverages all possible information sources to provide timely
and reliable information to communities responding to flood disasters.
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A Appendix

A.1 Model Architecture

We trained an encoder-decoder UNet-style architecture [13] with an EfficientNet B1 [15] encoder
pretrained on Imagenet [3] to minimize the Mean Squared Error (MSE) between predicted fractional
water Ŷ and observation Y , given multi-channel input X . The model is optimized with Adam [7].
During training, random crops of 352x352, and random flips (horizontal and vertical) were applied as
data augmentation.

A.2 Splits

Fig. 4a) shows the temporal distribution of splits. 6865 examples are split into three cross-validation
folds and a single test set. Splits are made temporally, and assessed for geographic balance after the
fact (Fig. 4b). The sinusoidal tile grid of the MODIS land products is used to assess geographic
balance, with each tile representing 10◦ x 10◦ at the equator [10].

(a)

(b)

Figure 4: Distribution of splits a) temporally and b) geographically

7



A.3 Houston Events Description

Table 1 summarizes the dates of the events used in the Houston case study

Event Date Range Caused Flooding?
Hurricane Harvey 2017-08-26 - 2017-09-05 Yes
Storm Nicholas 2021-09-13 - 2021-09-20 Yes
Storm Imelda 2019-09-17 - 2019-09-24 Yes

Hurricane Laura 2020-08-27 - 2020-09-05 No
Storm Rita 2005-09-24 - 2005-10-01 No

Table 1: Summary of events used in Houston case study

A.4 Satellite Observations During Hurricane Harvey

We visualize satellite observations after Hurricane Harvey’s landfall from the Aqua and Terra satellite
constellation (MODIS) as well as predictions from our proprietary satellite segmentation model in
Fig. 5. While extreme flooding outside the city is visible four days after the hurricane, it takes 7 days
from the event to obtain a clear view of the Houston, at which point damaging flooding may have
receded. In contrast, our model will make predictions hourly from the time of the event striking, and
within 24 hours it is evident that this storm is a disastrous outlier (Fig. 2).

Figure 5: False Colour Composites of Aqua and Terra (MODIS) observations with segmented water
overlaid in blue on several days after Hurricane Harvey’s landfall.

8



A.5 Proprietary Satellite Segmentation Model

Our proprietary water segmentation model was designed to produce fractional water labels at 250m
resolution based on an optical satellite observation. To demonstrate the effectiveness of this model, a
test set of 2209 hand-labelled examples were produced from held-out geographies. A summary of the
model’s performance on this held-out test set is provided in Table 2.

Pixel Subset MSE (mean +/- std)
Never Flooded Pixels (GSW ∈ [0, 0.005)]) 0.014 +/- 0.005

Flooded Before Pixels (GSW ∈ [0.005, 0.30]) 0.021 +/- 0.005
Table 2: Mean Squared Error on the held-out test set
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