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A B S T R A C T   

Long short-term memory (LSTM) models have been shown to be efficient for rainfall-runoff modeling, and to a 
lesser extent, for groundwater depth forecasting. In this study, LSTMs were applied to quantify the spatiotem-
poral evolution of surface and subsurface hydrographs in Alabama in the Southeastern United States, where 
water sustainability has not been fully quantified across spatiotemporal scales. First, the surface water LSTM 
model with extensive dynamic (precipitation and other weather variables) and static (basin characteristics) in-
puts predicted the main characteristics of streamflow for six years at 19 gauged basins in Alabama. The model 
tended to underestimate extremely high streamflow but adding drainage density as an input feature slightly 
improved the predictions of extreme events. Second, to predict the groundwater depth evolution, a groundwater 
LSTM (GW-LSTM) model was proposed and applied using static inputs capturing the aquifers’ hydrogeological 
properties and dynamic inputs of meteorological information. Three precipitation scenarios were also explored to 
evaluate the groundwater hydrograph evolution in the next two decades. The GW-LSTM model predicted the 
general trend of daily groundwater depth fluctuations (at 21 wells distributed across Alabama from 1990 to 
2021) including most extremely high groundwater levels, and recovered groundwater depth for locations 
withheld from model training and validation. This study, therefore, extended the application of LSTMs in 
quantifying the spatiotemporal evolution of surface water and groundwater, two manifestations of a single in-
tegrated resource.   

1. Introduction 

Long short-term memory (LSTM) is an artificial neural network 
(ANN) proposed by Hochreiter and Schmidhuber (1997) to improve the 
standard feedforward neural networks by capturing a short-term mem-
ory for a recurrent neural network that can last many timesteps. LSTM’s 
application to hydrology has been expanding rapidly. LSTM has also 
been applied to obtain satisfactory time series predictions in many other 
scientific areas (Gers et al., 2002; Zaytar and El Amrani, 2016; Ma et al., 
2015; Shi et al., 2015; Song et al., 2020; among many others), and is 
becoming a focus of deep learning, according to the extensive review by 
Yu et al. (2019). LSTM also exhibits remarkable success in predicting 
rainfall-runoff response (Kratzert et al., 2018a, 2018b, 2019, 2022; 
Gauch et al., 2021; Frame et al., 2021; Nearing et al., 2022; Gholizadeh 
et al., 2022), probably due to its promising capability in handling both 

short-term impulses and long-term dependencies embedded in many 
hydrologic processes. For example, Nevo et al. (2022) used LSTM for 
Google’s operational flood forecasting system, which is a reliable source 
for flood extent prediction (Hamidi et al., 2022). Boulmaiz et al. (2020) 
found that LSTM only required a relatively small amount of data to 
“learn” the behavior of rainfall–runoff relationship. Recently, Frame 
et al. (2022) showed that, although LSTM remains relatively accurate in 
predicting extreme events compared to both a conceptual model (i.e., 
the Sacramento Model developed by Burnash et al. (1973)) and a 
process-based model (i.e., United States (U.S.) National Water Model 
(https://water.noaa.gov/about/nwm) developed by National Oceanic 
and Atmospheric Administration (NOAA)), it still underpredicts 
extremely high events. Further efforts are still needed to explore LSTM’s 
modeling capabilities and accuracy for surface water flows especially for 
extreme events, which motivated this study. 
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LSTM has also been recently applied to quantify groundwater flow, 
although to a lesser extent. Groundwater sustainability has been seri-
ously challenged worldwide by various factors including climate 
change, agricultural and industrial contamination, and over exploitation 
(Bouwer, 2000; Gleeson et al., 2012). Many studies have been focused 
on modeling regional/continental scale groundwater flow (Zhou and Li, 
2011; Maxwell, 2013; Maxwell et al., 2015; Maxwell and Condon, 2016; 
De Graaf et al., 2020; Gholizadeh et al., 2020; Condon et al., 2021; Wu 
et al., 2021) and forecasting groundwater levels using ANNs (Nayak 
et al., 2006; Banerjee et al., 2009; Yoon et al., 2011; Adamowski and 
Chan, 2011; Sahoo et al., 2017; Bowes et al., 2019; Rahman et al., 2020; 
Ahmadi et al., 2022). Recently, Tao et al. (2022) applied LSTMs to 
predict groundwater level. Zhang et al. (2018) developed an LSTM based 
model for predicting water table depth in agricultural areas in northern 
China. Chen et al. (2020) simulated groundwater dynamics in north-
western China using various machine learning algorithms. Most of these 
studies did not consider the impacts of aquifer physical properties, such 

Fig. 1. Study area – Alabama state map with 19 gauged basins adapted from CAMEL dataset (the four pink filled polygons are four representative basins) (A) and 21 
wells (B). Four areas with different colors (a, b, c, and d) shown in plot (b) are four different zones categorized in this study by the average groundwater depth (GWD) 
variations during the last 30 years. A positive GWD variation means rising of groundwater head, and a negative one represents falling groundwater head in the last 
30 years. The number (1 to 21) in plot (B) near each well represents the well ID, and the number near each basin in plot (A) represents the basin CAMELS ID (the base 
map is adapted from USGS). 

Table 1 
List of LSTM model parameters.  

No LSTM parameters Value  

1 Number of LSTM layers 2  
2 cell/hidden state length 20  
3 Initial forget bias 3  
4 Dropout rate 0.4  
5 Learning rate 0.01  
6 Batch size 256  
7 Optimizer Adam  
8 Number of training epochs 50  
9 Sequence length 365  

Table 2 
Inputs of the surface water LSTM models.  

Surface water LSTM inputs Type Source 

Precipitation 
Solar radiation 
Maximum temperature 
Minimum temperature 
Vapor pressure 

Dynamic CAMELS (https://gdex.ucar.edu/ 
dataset/camels.html) 

Mean basin elevation 
Mean basin slope 
Basin area 
Forest fraction 
Maximum leaf area index (LAI) 
Minimum LAI 
LAI difference 
Maximum green vegetation 
fraction (GVF) 
Minimum GVF 
Soil depth 
Soil porosity 
Soil conductivity 
Maximum water content 
Sand fraction 
Silt fraction 
Clay fraction 
Carbonate rocks fraction 
Permeability 
Mean potential 
evapotranspiration (PET) 
Aridity 
Snow fraction 

Static  
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as conductivity, porosity, and soil properties, on groundwater depth 
change. Wunsch et al. (2021) compared LSTM, convolutional neural 
networks (CNNs), and non-linear autoregressive networks with exoge-
nous input for groundwater level forecasting, and they found that LSTMs 
can perform substantially better with longer datasets, for example four 
years or more. Afzaal et al. (2019) employed LSTM for groundwater 
estimation using dynamic physical hydrology inputs such as precipita-
tion, temperature, etc. Vu et al. (2021) used LSTM for interpolating 
groundwater levels, but their only input was groundwater level data. 
Many of the previous studies used the previous time step of groundwater 
level data, which made the LSTMs autoregressive models due to the lack 
of inputs such as hydraulic conductivity and soil properties. Therefore, it 

is necessary to evaluate the potential impact of typical aquifer properties 
(which may dominate groundwater dynamics) on LSTM modeling of 
groundwater level time series, so that one can better and reliably expand 
LSTM to compensate the traditional process-based, computational- 
demanding numerical models for simulating and predicting subsurface 
flow. In addition, prediction of groundwater depth evolution at locations 
without recorded data (i.e., ungauged setting), which is practically 
important, has not been addressed in the previous studies. 

This work aims to fill the above-mentioned knowledge gaps and 
continue to expand LSTM applications for quantifying surface and sub-
surface hydrographs in three ways. First, we propose to apply catchment 
drainage density (defined as the total catchment stream length divided 
by the catchment area) data to improve runoff discharge in extreme 
events (higher than a certain streamflow discharge based on each 
catchment recorded data) calculated by LSTM for catchments across the 
state of Alabama. Second, we expand the application of LSTM by adding 
fundamental static/dynamic inputs (including precipitation, tempera-
ture, hydraulic conductivity, maximum water content, soil porosity, and 
soil depth data) to predict groundwater depth, and this expanded LSTM 
is called “GW-LSTM” (where “GW” stands for groundwater) in this 
study. This GW-LSTM model follows the ParFlow-ML model proposed by 
Tran et al. (2021), who added hydraulic conductivity and topography in 
LSTM to predict ParFlow solutions of pressure heads (notably, Tran et al. 
(2021) considered only ParFlow model results in a short period (~5 
days) which makes it simply a surrogate model for ParFlow. Surrogate 
models are often developed to reduce computational cost of complex 
physical models, but they are then subject to the same predictive limi-
tations of those physical models. Our model is trained to predict real 
data, and we consider more general conditions with real-world data over 

Table 3 
Inputs of the GW-LSTM models.  

GW-LSTM inputs Type Source 

Precipitation 
Temperature 

Dynamic NOAA (https://www.ncei.noaa. 
gov/cdo-web/datasets) 

Soil depth 
Porosity 
Maximum water content 
Leaf area index (LAI) 
Mean potential 
evapotranspiration (PET) 
Sand fraction 
Silt fraction 
Clay fraction 
Carbonate rocks fraction 

Static CAMELS (https://gdex.ucar.edu/ 
dataset/camels.html) 

Hydraulic conductivity Static GSA (https://www.gsa.state.al. 
us/gsa/groundwater/wellrecords)  

Fig. 2. Streamflow discharge calculated by the LSTM model (i.e., the Neural Hydrology network) (red lines) versus the observed hydrograph (black lines) at four 
representative basins a, b, c and d (basin ID: 03574500, 02450250, 02422500 and 02479560) shown by the four pink filled polygons in Fig. 1A. 
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decades in this study). Third, we evaluate the GW-LSTM for predicting 
groundwater depth in wells with historical data, and at locations where 
there are no groundwater level measurements to train the model. Both 
surface water and groundwater (located in the same catchment or the 
most adjacent catchment under the similar meteorological condition) 
are considered in this study, since surface water and groundwater form 
two manifestations of a single resource (Winter, 1999). We evaluate the 
potential discrepancy in the LSTM modeling applicability and extreme 
event responses in surface and subsurface dynamics by comparing the 
LSTM predictions of both surface and subsurface hydrographs for the 
same basin and precipitation inputs. 

The rest of this article is organized as follows. Section 2 introduces 
the methodology and study site. Surface and subsurface water resources 
are evaluated by surface water LSTM model and GW-LSTM model using 
the Neural Hydrology (NH) Python library (Kratzert et al., 2018a). Three 
scenarios of future precipitation time series are then considered to assess 
the spatiotemporal evolution of groundwater depth variation. Section 3 
shows the application results of the two LSTM models. Section 4 dis-
cusses the ability of surface water LSTM and GW-LSTM to predict the 
time series of streamflow discharge and groundwater depth, respec-
tively, in various basins in Alabama. The importance of each input factor 
in the GW-LSTM model is also ranked, and both the improved surface 
water model (with drainage density as an additional input LSTM) and 
the GS-LSTM model behaviors are assessed in quantifying extreme 
events. Section 5 presents the main conclusions. Section A in Supple-
mentary Material (SM) briefly reviews LSTM. Section B in SM shows the 
additional information for wells and basins in Alabama used in the main 
text, as well as the LSTM modeling results for the basins not listed in the 

main text. Section C in SM applies wavelet analysis to assess the response 
of groundwater level fluctuations to precipitation and sea level changes, 
to support the LSTM results shown in the main text. 

We emphasize again that LSTM has been widely applied by various 
researchers in hydrology and other research areas. This study aims to 
add three more components to the LSTM models and improve LSTM 
applications in hydrology. First, drainage density is added to the surface 
water LSTM model as a physiographic characteristic factor, resulting in a 
LSTM model called SW-DD-LSTM. As shown below, this new input 
slightly improves the model performance and can guide future efforts to 
predict extreme events of streamflow. Second, a groundwater LSTM 
model, GW-LSTM, is proposed using core hydrogeologic inputs (missed 
by many previous applications) including hydraulic conductivity and 
core soil properties that dominate subsurface response to surface 
recharge. Third, our LSTM models improve previous autorepression 
LSTM models in predicting groundwater depth at locations without 
recorded data. 

2. Study site and LSTM models 

2.1. Surface water analysis using the Neural Hydrology (NH) 

NH is a Python library developed by Kratzert et al. (2018a) and is 
used in this study to calculate runoff for 19 gauged basins throughout 
Alabama with sufficient (30 years period of data) recorded streamflow 
data (Fig. 1A). The catchment information was obtained from the 
Catchment Attributes and Meteorological Large Sample (CAMELS) 
dataset presented by the U.S. National Center for Atmospheric Research 

Fig. 3. Time series data of the groundwater depth (GWD) below the ground surface: the GW-LSTM model results (red lines) versus the observed time series data 
(black lines) for 4 representative wells in Alabama. Wells a, b, c, and d are wells No. 18, 17, 12, and 2 shown in Fig. 1B. 
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Fig. 4. Response of groundwater depth (from the land surface) to future climate change: evolution of GWD predicted by the GW-LSTM model for the next twenty 
years under three climate scenarios for zone (a), (b), (c), and (d) (wells No. 18, 17, 12, and 2). In each plot, the bottom curves represent precipitation for the three 
climate scenarios, and the top curves show the predicted GWD. 
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(NCAR) (Newman et al., 2014; Addor et al., 2017), which contains the 
hydrometeorological time series and attributes for 671 basins in the U.S. 
The surface water LSTM model uses four types of data, which are the 
daily precipitation, solar radiation, the maximum and minimum tem-
peratures, and vapor pressures, as dynamic inputs in LSTM modeling. 
Static inputs include (long-term) catchment attributes and climate data 
(21 total input variables), including the mean basin elevation, mean 
basin slope, basin area, forest fraction, maximum leaf area index (LAI), 
minimum LAI, LAI difference, maximum green vegetation fraction 
(GVF), minimum GVF, soil depth, soil porosity, soil conductivity, 
maximum water content, sand fraction, silt fraction, clay fraction, car-
bonate rocks fraction, permeability, mean potential evapotranspiration 
(PET), aridity, and snow fraction. Hence, the static inputs in LSTM built 
in CAMELS consider a wide range of attributes that may affect catch-
ment behavior and the corresponding hydrological processes (i.e., 
runoff response to rainfall), providing a relatively complete dataset 
(using only the Alabama CAMELS sites) for this study. 

To evaluate the modeling results, Nash–Sutcliffe efficiency (NSE) 
(Nash and Sutcliffe, 1970) is used (as well as root-mean-squared-error 
(RMSE)). NSE is the ratio of the error variance of the modeled time- 
series and the variance of the observed time-series subtracted from one: 

NSE = 1 −

∑T

t=1

(
Qt

0 − Qt
m

)2

∑T

t=1

(
Qt

0 − Q0
)2
,

where Q0 denotes the mean observed streamflow, Qt
m and Qt

0 denote the 
modeled and observed streamflow at time t, respectively, and T repre-
sents the total time. For a perfect model with a zero-estimation error 
variance, the resulting NSE equals 1. Therefore, NSE values closer to one 
suggest that the model fitting/prediction matches better the real data. 
Often, a NSE >0.8 is used as a criterion for acceptable model predictions 
(Moriasi et al., 2015). 

In this study, we used a LSTM architecture consisting of three LSTM 
layers. Each of the first two layers has 20 hidden state lengths, and the 
third layer is a dense one connecting LSTM output at the last time step to 

a single output neuron with linear activation. Another hyperparameter 
is the length of the input sequence, which defines the number of days of 
meteorological input data for LSTM to predict the next streamflow 
value. We kept the sequence length constant at 365 (days) and assumed 
a full year’s worth of seasonality is the longest memory that the LSTM 
needs, so that we can capture a full annual cycle. To predict the daily 
streamflow and groundwater depth, we provide the last 365 time steps 
of meteorological observations as LSTM inputs. The initial learning rate 
is 1 × 10− 2, and the neural network is trained for 50 epochs to minimize 
the RMSE. The hyperparameters adopted in this study are similar to 
those tuned by Kratzert et al. (2019). The LSTM model parameters are 
reported in Table 1. 

In our LSTM model, we added dropout between layers. This tech-
nique can prevent the model from overfitting (Srivastava et al., 2014). 
Particularly, dropout sets a certain percentage of random neurons to 
zero during training to force the network into a more robust feature 
learning. To avoid the effect of overfitting of the network on the training 
data, we identified the number of epochs for having the highest NSE for 
the validation period. Our preliminary experiments showed that the 
highest mean NSE for training period was achieved after 50 epochs. 

The main source of uncertainty in the LSTM modeling is the opti-
mizer type. We used the Adam optimizer (Kingma and Ba, 2014), one of 
the strong optimization algorithms, for training time series data. In 
addition, like the other data-based models, the data uncertainty also 
relates to the reliability of the quality and quantity of the data used to 
train the LSTM model. We selected reliable databases, such as CAMELS 
which contains basin scale hydrometeorological forcing data for 671 
basins in the United States Geological Survey’s Hydro-Climatic Data 
Network 2009 (HCDN-2009) (Lins, 2012) conterminous U.S. basin 
subset to achieve the best performance. We also normalized the 
streamflow discharge data by dividing the streamflow discharge of each 
basin by its area to avoid possibly incorrect pattern learning of the 
model. In addition, model evaluations performed for ungauged settings 
(as one of the model application extensions) could obviate the data 
uncertainty. 

Because we obtained streamflow data from CAMELS and ground-
water level data from the Geological Survey of Alabama (GSA) well 

Fig. 5. Wavelet coherence spectrum between precipitation and groundwater depth for well #1 shown in Fig. 1B. The thick black contour designates the 95% 
confidence level. Bivariate wavelet coherence (BWC) outside the solid circular line cannot be used in the analysis due to the boundary effect. Arrows indicate the 
relative phase relationship: arrows pointing to the right exhibit the same phase, and arrows pointing to the left show antiphase. Shading indicates the strength of 
coherence. The color bar (with the legend) denotes the correlation coefficient of the two time series data. 
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records database (https://www.gsa.state.al.us/gsa/groundwater/well-
records), the main limitation of the LSTM model is the period of the time 
series data. The hydraulic properties of aquifers are another limitation 
due to their complexity, although we employed local borehole data as 
the updated hydrogeological data for the selected sites. As shown below, 
the groundwater models developed in this study can lead to reliable 

predictions with a NSE value typically above 0.8. 
We trained a single LSTM model using all sites’ data for both surface 

water and GW models because ungauged predictions can only be made 
when using a single model for all sites, rather than individual LSTMs. 
This gives us an LSTM model that has learned a general process repre-
sentation that can be applied in locations without data. We trained the 
LSTM model using two types of inputs: dynamic and static inputs for 
surface water and groundwater LSTM models (Table 2 and Table 3). In 
the LSTM model, each iteration step in training works with a batch of 
available training data. The number of samples per batch was defined as 
256, a common size used by other researchers (e.g., Srivastava et al., 
2020; Yin et al., 2021). Each of these samples consists of one target value 

Fig. 6. Streamflow discharge prediction by the surface water LSTM model for basins held out from training in four different zones in Alabama (marked as pink 
polygons in Fig. 1A). 

Fig. 7. Application of GW-LSTM for predicting GWD for well held out from 
training: GWD predictions using the GW-LSTM model for well #15 (marked in 
Fig. 1B) without observed data for training and validating. 

Table 4 
Importance ranking (from high to low) of factors affecting the surface water 
LSTM model and the GW-LSTM model outputs.  

Ranking Surface water LSTM GW-LSTM  

1 Precipitation Precipitation  
2 Permeability Hydraulic conductivity  
3 Maximum temperature Soil depth  
4 Solar radiation Maximum water content  
5 Vapor pressure Leaf area index (LAI)  
6 Maximum water content   
7 Minimum temperature   
8 Soil depth   
9 Carbonate rocks fraction   
10 Forest fraction   
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of a given day and the dynamic input of the n preceding days. The model 
calculates the average of the RMSE between the simulated and observed 
values as the loss function in every iteration step for these 256 samples. 
The best performance for the training set was achieved after 50 epochs, 
where epoch is the period in which each training sample is used once for 
updating the model parameters. 

Alabama has a humid subtropical climate with an average annual 
temperature of 18 ◦C. The southern part of the state is warmer than the 
northern part. The average annual precipitation of the state is 1400 mm 
(adopted from NOAA), and ~10% of the precipitation enters the sub-
surface and recharges aquifers (adopted from Geological Survey of 
Alabama, Alabama’s Water, Educational Series 11, https://www.gsa. 
state.al.us/gsa/groundwater/waterinfo). There are four major physio-
graphic provinces in Alabama, including 1) Appalachian and interior 
low plateaus in the north that consist of Ordovician limestone, 2) Valley 
and Ridge in central Alabama that are formed by sandstone, chert beds, 
shale, and carbonated rocks, 3) Piedmont in the eastern part that con-
sists of metamorphic rocks including low-grade greenschist and mig-
matite facies, and 4) the coastal plain of Alabama in the southern and 
western parts of the state formed by Mesozoic and Cenozoic unconsol-
idated sediments (Ebersole et al., 2019). Based on the report of Alabama 
Department of Economic and Community Affairs (https://adeca.ala-
bama.gov/water-management/publications-reports-and-information/), 
water use in Alabama was about 8239 million gallons per day (Mgal/ 
day) in 2015. Total surface-water withdrawals were about 7743 Mgal/ 
day (94% of the total withdrawn) and the remaining 496 Mgal/day were 
from groundwater. The daily meteorological and streamflow time series 
data for the last 30 years and catchment attributes are taken from NCAR. 

The daily meteorological and streamflow time series data for insert data 
range (30-year time period) and catchment attributes are from NCAR 
(https://rda.ucar.edu/). The daily groundwater level data of insert date 
range (30-year time period) and aquifer properties are taken from GSA, 
which assesses groundwater in Alabama with real-time and periodic 
monitoring programs (https://www.gsa.state.al.us/gsa/groundwater). 

2.2. Groundwater resources and GW-LSTM model 

We extended the classical LSTM applications by developing the GW- 
LSTM model for exploring the spatiotemporal evolution of groundwater 
depth in Alabama. The dynamics data of groundwater depth at 21 wells 
with complete data for 30 years distributed across Alabama (marked in 
Fig. 1B) were acquired from GSA (see above). Dynamic inputs in GW- 
LSTM including daily precipitation and temperature data were ob-
tained from NOAA. In addition, static inputs in GW-LSTM include the 
long-term average of PET, LAI, and the major aquifer and soil hydro-
logical properties including hydraulic conductivity, porosity, maximum 
water content, and soil depth which connect precipitation and ground-
water recharge. These inputs were obtained from NCAR (CAMELS) and 
GSA’s groundwater assessment program (described also above). 

3. Model results 

3.1. Surface water hydrograph evaluation 

We used 80% of the hydrograph data for training (75%) and vali-
dation (5%) and kept the remaining 20% for testing, a common split 

Fig. 8. Application of SW-DD-LSTM at four representative basins (marked in Fig. 1B): Streamflow discharge calculated by the SW-DD-LSTM model compared to the 
observed data. 
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used for LSTM (Géron, 2022). In the training stage, the weights and 
biases in LSTM are updated based on the given loss function of each 
iteration step, where the mean-squared error (MSE) is used as an 
objective criterion. The loss (between the observed and model predicted 
discharges) is then calculated and used to update the model parameters. 
The surface water LSTM model uses the Adam optimization algorithm 
(Kingma and Ba, 2014) to tune the weights and biases to improve the 
model performance. For illustration purposes, four basins were selected 
(marked in Fig. 1A by pink-filled polygons), one from each of the 
geographic zones, distinguished by varying trends of groundwater depth 
(GWD) over the last 30 years (discussed in Section 3.3). The observed 
and LSTM modeled hydrographs for these four basins are plotted in 
Fig. 2. The LSTM solutions for the other 15 basins are shown in Appendix 
B. These results show that the LSTM model captures the overall pattern 
of all the observed hydrographs. Most of the calculated NSEs for the 
testing period only are >0.8 (Fig. 2), and hence the LSTM model can 
reasonably predict hydrographs in Alabama’s gauged basins after 
training and validation. 

3.2. Groundwater depth prediction by the GW-LSTM model 

To predict the temporal evolution of groundwater depth, the GW- 

LSTM model first uses groundwater depth time series data from 1990 
to 2013 for training, and from 2013 to 2015 for validation. The testing 
period is selected as the subsequent 5 years (2015–2021) to incorporate 
possible climate change effects in recent years. The sequence length is 
365, and we set 50 training epochs in the GW-LSTM model. Twenty-one 
wells (introduced in Section 2.2 and marked in Fig. 1B) with long period 
data and distributed across Alabama are selected for checking the 
applicability of the GW-LSTM model. Results for four representative 
wells (corresponding to each of the four basins plotted in Fig. 1) are 
shown in Fig. 3. The GW-LSTM model results show an overall close 
match with the observed GWD (NSE > 0.8), indicating that this model 
can likely fill in missing observations over short periods. 

3.3. Spatiotemporal analysis of groundwater depth response to climate 
change 

As mentioned above, based on the historical groundwater depth data 
and their trends, we delineated 4 zones (denoted as Zone A, B, C, and D) 
for the 19 gauged basins in Alabama (shown in Fig. 1). Zone A is in the 
Ohio watershed, and it is characterized by a 0.84 m increase in the 
groundwater level in the last 30 years (1992–2022) (the only region 
with a rising groundwater table in Alabama). Zone B is located in the 

Fig. 9. Comparison between surface and subsurface outputs in extreme events for four basins and wells marked in Fig. 1.  
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northern part of the Mobile watershed and has a higher elevation than 
zones C and D. Zone C covers the broad area of central Alabama, has an 
average decline of 4.42 m (the greatest decline of all four zones) in the 
groundwater level during the most recent 30 years, and is therefore 
more vulnerable than the other three zones to potential future droughts. 
Zone D covers the southern coastal area with a substantial amount of 
annual rainfall and has the lowest GWD variation, probably because it 
receives more precipitation (1724 mm annually based on CAMELS 
precipitation data) than the northern regions. 

To further evaluate the impact of future climate change on ground-
water sustainability in Alabama, we apply GW-LSTM to predict the 
groundwater depth change under three climate scenarios in the next 20 
years: base scenario, wet scenario, and dry scenario (Fig. 4). 

For the base scenario, artificial precipitation data in the next 20 years 
(2023–2043) are generated by repeating the same precipitation patterns 
observed in the last twenty years (2002− 2022) for all four zones (Fig. 4). 
The GW-LSTM model results follow a similar trend as the last 20 years 
obtained in Section 3.2. 

For the wet scenario, the precipitation rate increases by 50% for all 
future years (Fig. 4). Results of this scenario show that most wells exhibit 
an elevated water table relative to the base scenario (due to the 
increasing precipitation), while the groundwater depth in zone A re-
mains relatively close to the base scenario, probably because the average 
groundwater depth is very close to the land surface in this zone. Evap-
oration and drainage from shallow groundwater may constrain the 
groundwater depth fluctuation in this zone. 

The dry scenario (where precipitation is decreased by 50% for all 
future years) simulates an overall lower precipitation rate in the future 
(somehow related, for example, to climate change in southeastern U.S.) 
(Kunkel et al., 2013). Forecasted results using GW-LSTM are plotted in 
Fig. 4, showing that zone C is the most vulnerable region in Alabama to 
the potential drought in the next two decades. This might be due to the 
strong dependence on precipitation for GWD at zone C wells. As shown 
in Fig. 1B, zone C had a significant response to the recent droughts by 
having the greatest groundwater depth increase in all four zones. Fig. B1 
in Appendix B shows the groundwater hydrographs for 4 wells screened 
at different depths, showing that the zone C groundwater table has 
dropped regardless of the well depth. 

3.4. Wavelet analysis of surface/subsurface time series data 

We also apply wavelet analysis (introduced in Appendix C) to assess 
the response of groundwater depth to precipitation and sea level change. 
Two wells (#1 and #2 marked in Fig. 1B) in Zone D are considered, since 
they are located near the Gulf of Mexico in Baldwin County, Alabama. 
Although the wavelet analysis results do not show a meaningful corre-
lation between the sea level and groundwater depth (Appendix C), the 
wavelet coherence power spectrum between precipitation and ground-
water depth reveals a large area above the significant test level, espe-
cially for the temporal scale around 64 days (Fig. 5). The patterns of the 
power spectrum show negative correlations (red coloring and left- 
pointing arrows) across many frequencies and dates (Fig. 5), also indi-
cating damped fluctuation and delayed rise of the groundwater table in 
response to precipitation. This finding identifies the different responses 
of extreme events in the groundwater level hydrographs to precipitation, 
which will then be used in Section 4.4. 

4. Discussion 

4.1. Surface water with out-of-sample predictions 

A key potential application of the LSTM models is to predict 
streamflow for basins without streamflow data (Worland et al., 2019a, 
2019b). Dynamic inputs used for the LSTM to predict runoff discharge 
for ungauged basins include 4 types of data listed in Section 2.1, and 
static inputs include the 21 catchment attributes/climate data listed also 

in Section 2.1. By using cross validation techniques, the four selected 
basins with runoff data are now removed from the training and vali-
dating processes, and represent the ungauged basins and model trained 
on the remaining basins. The resultant surface water LSTM model pre-
dictions (for the whole period) are depicted in Fig. 6, showing that the 
model has a good prediction of runoff discharge for ungauged basins in 
Alabama. 

4.2. Groundwater with out-of-sample predictions 

We use GW-LSTM to predict groundwater depth (the depth to the 
water table below the land surface) variations at locations without wells. 
To achieve this goal, we perform a cross validation: train the model on 
some batch of wells, and then test the model on a well that is not 
included in the training set. Model inputs needed for predicting 
groundwater depth variations without recorded data include daily pre-
cipitation and temperature data as dynamic inputs, and the hydraulic 
conductivity, porosity, maximum water content, and soil depth as static 
inputs, the same as those listed in Section 2.2. Fig. 7 shows the result of 
out-of-sample in space predictions for the one of the four wells discussed 
above. The GW-LSTM model can reasonably predict groundwater depth 
variations (NSE = 0.733, which means good prediction) at locations 
where there are no wells. 

4.3. Ranking factors affecting hydrographs 

We apply feature importance analysis to identify the effect of input 
factors on the results of the surface water LSTM and GW-LSTM models 
(Table 4). We used the integrated gradient method, which is a technique 
for attributing the importance of each input feature to the output of an 
LSTM model. The ordered magnitudes of the integrated gradients are 
equal to the order of importance of the inputs. The first ten important 
factors identified for surface water LSTM and the first five important 
factors affecting the GW-LSTM modeling results (considering that GW- 
LSTM inputs are less than those of the surface LSTM model) are 
ranked (from high to low) in this table. These rankings are consistent 
with known effects of hydrological processes. For example, among these 
factors, precipitation as a dynamic input exhibits the most important 
impact on the LSTM results for both models because it is the greatest 
source for producing streamflow and groundwater recharge. In the GW- 
LSTM mode, the soil water content exhibits a higher impact than the LAI 
in affecting the groundwater table. 

4.4. Extreme events 

For the surface water model, the results shown in Section 2 revealed 
that, although the LSTM model has satisfactory outputs for non-extreme 
events of streamflow, the model results are less reliable for predicting 
extreme events (see Fig. 2). As a preliminary test to address this issue, 
here we add the drainage density as a new physiographic characteristic 
(which is not a variable included in the CAMELS dataset, and has not yet 
been studied thoroughly as a model input) and input to the surface water 
LSTM model. The drainage density, which is a measurement of the 
channel lengths per unit area of catchment, is indicative of infiltration 
and permeability of the drainage basin because it is controlled mostly by 
geological properties and therefore is related to both climate and 
physical characteristics of the basin. We assume that the drainage den-
sity may have a significant impact on stream discharge during extreme 
precipitation events, such as acting as an amplifier of the peak discharge. 
Our test results show that the surface water model with drainage density 
as an additional input (called “SW-DD-LSTM”) slightly promotes the 
streamflow discharge predictions (notably, the NSE of the SW-DD-LSTM 
results (listed in Fig. 8) is slightly larger than that for the standard LSTM 
(listed in Fig. 2)). The root mean square error for the predictions of 
extreme events also decreased by 0.6, 0.55, 0.2, and 0.04 mm/day for 
basin a, b, c, and d, respectively. The model, however, is still unable to 
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predict the exact extremely high values (Fig. 8). Further effort is needed 
to improve the extreme event prediction by for example identifying the 
other physiographic characteristics such as Horton-Strahler ratio 
(Bamufleh et al., 2020), using the Synthetic Minority Over-sampling 
Technique (SMOTE) presented by Chawla et al. (2002) and including 
some dynamic inputs such as soil moisture. 

To test predictability of extreme events with GW-LSTM and for visual 
clarity, we changed the time scale for the LSTM results of the ground-
water depth to explore the model outputs of extreme events, e.g., the 
streamflow discharge higher than 20 mm/day in zone A (Fig. 9). Results 
indicate that our proposed GW-LSTM model can predict GWD response 
to extreme rainfall events, probably due to (i) the lag time between 
precipitation and groundwater table change, and (ii) the damping of 
surface signals when they propagate into the subsurface. 

5. Conclusion 

This study applied LSTM models to investigate the spatiotemporal 
evolution of surface water and groundwater resources in Alabama. 
Model applications and analysis of results led to the following four main 
conclusions. 

First, the LSTM model (without drainage density) made a satisfactory 
prediction of streamflow discharge at 19 gauged basins in Alabama, but 
it cannot fully capture extreme events of stream discharge. The in-
efficiency in modeling extreme discharges might be because the phys-
iographic data that have vital role in peak streamflow during extreme 
events were not sufficiently captured by the CAMELS static attributes. 
Additional inputs, such as the drainage density (resulting in the SW-DD- 
LSTM model), may be needed to improve the LSTM model’s predict-
ability for extreme events it’s one of many options for improving high 
flows. Our preliminary tests showed that SW-DD-LSTM slightly 
improved the surface water LSTM model predictions, and further work is 
still needed to predict extreme events by identifying additional, relevant 
physiographic characteristics of hydrological basins. 

Second, the groundwater LSTM model (GW-LSTM) proposed by this 
study predicted the groundwater depth evolution for 21 wells across 
Alabama. Unlike previous studies which used groundwater data at a 
previous time step (which is unsuitable for any location without a 
monitoring well), GW-LSTM accepted input features including hydraulic 
conductivity, soil depth, soil porosity, and maximum water content, 
which can capture the main hydrogeological properties of aquifers and 
therefore explain why GW-LSTM can predict the general trend of the 
daily groundwater level fluctuations. 

Third, the LSTM model can predict subsurface hydrographs well for 
capturing extreme events, probably due to the damped fluctuation and 
delayed response of groundwater table (to surface inputs), as shown by 
the wavelet analysis. 

Fourth, the GW-LSTM model adequately predicts groundwater depth 
for aquifers where no wells or samples are available. The same conclu-
sion was found for the surface water LSTM model, which can reasonably 
predict runoff discharge for ungauged basins in Alabama. This predic-
tive skill can be useful for assessing the groundwater table or stream 
discharge in locations without measurements or filling the sampling 
gaps. 
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