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ABSTRACT
This technical note describes recent efforts to integrate machine learning (ML) models, specifically long short- term memory 
(LSTM) networks and differentiable parameter learning conceptual hydrological models (δ conceptual models), into the next- 
generation water resources modeling framework (Nextgen) to enhance future versions of the U.S. National Water Model (NWM). 
We address three specific methodology gaps of this new modeling framework: (1) assess model performance across many ungauged 
catchments, (2) diagnostic- based model selection, and (3) regionalization based on catchment attributes. We demonstrate that an 
LSTM trained on CAMELS catchments can make large- scale predictions with Nextgen across the New England region and match 
the average flow duration curve observed by stream gauges for streamflow with low exceedance probability (high flows), but di-
verges from the mean in high exceedance probability (low flows). We demonstrate improvements in peak flow predictions when 
using δ conceptual model, but results also suggest that performance increases may come at a cost of accurately representing hydro-
logic states within the conceptual model. We propose a novel approach using ML to predict the most performant mosaic modeling 
approach and demonstrate improved distributions of efficiency scores throughout the large sample of basins. Our findings advocate 
for the future development of ML capabilities within Nextgen for advancing operational hydrological modeling.

1   |   Introduction

The operational U.S. National Water Model (NWM) is based on 
WRF Hydro (Cosgrove et  al.  2024), originally deployed in 2016. 
Since then, tremendous progress has occurred within the machine 
learning (ML) community in developing and operationalizing 
robust and reliable ML modeling approaches for hydrologic fore-
casting (Nearing et al. 2020; Nearing et al. 2024). In recent years, 

the NOAA Summer Innovator's Program, which provides a test-
bed for continental scale modeling (Cosgrove et al. 2024), has ex-
plored ML capabilities for future versions of the NWM (Deardorff 
et al. 2022; Wang et al. 2023). Johnson et al. (2023) called for het-
erogeneous model formulations and diagnostic model selection 
for large- domain hydrological modeling. NOAA's Office of Water 
Prediction initiated the development of the standards based, model 
agnostic, next- generation water resources modeling framework 
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(Nextgen; Ogden et  al.  2021; https:// github. com/ NOAA-  OWP/ 
ngen, accessed January 2025), for the purposes of coupling spa-
tially varied models and supporting community development for 
continental- scale modeling (Cosgrove et  al.  2024). Participating 
federal agencies anticipate that standards based frameworks will 
facilitate research contributions to water prediction, including 
work by students (Ogden et al. 2021; Araki et al. 2024). The pur-
pose of this technical note is to review and synthesize student- led 
contributions of ML to Nextgen, primarily through the NOAA 
Summer Innovator's Program (Summer Institute) (SI; Bales and 
Flowers  2022; Bales and Flowers  2021; Bales  2019). Research 
themes at the SI in 2021, 2022, and 2023 were specifically designed 
to address the above- mentioned issues. This note concludes with 
recommendations for future ML development for Nextgen, which 
we hope bridges the gap between the fast- paced ML research and 
the need for robust analysis for operational water modeling.

In this technical note, we deploy ML and physics- informed 
ML models for streamflow prediction in Nextgen. Among the 
various ML models, long short- term memory (LSTM) network 
models for hydrological forecasting excel in terms of streamflow 
prediction skill and accuracy (Nearing et  al. 2024), and have 
been included as a key modeling approach in the Nextgen frame-
work (Frame 2022). Differentiable parameter learning concep-
tual hydrological models (δ conceptual models) utilize neural 
networks to generate static, or time- varying, parameters for 
process- based equations, tuning the NN through the operations 
of the physical equations, and has been proposed as a path for 
unifying ML and conceptual modeling (Shen et al. 2023). δ con-
ceptual models have been shown to perform well in ungauged 
regions (Feng et al. 2023), addressing the challenge of parame-
ter regionalization. This method works for different conceptual 
models of hydrological processes (Espinoza et al. 2024), and has 
been used for hydraulic routing (Bindas et al. 2024).

Given the hundreds of thousands (~800,000) of catchments within 
the CONUS scale Nextgen hydrofabric, one of the most pressing 
challenges is identifying the region- specific most performant 
modeling approach (Peckham et al. 2023). ML provides an ideal 
toolkit for dealing with the model selection problem, specifically 
high dimensional classification (Jehn et al. 2020). Representative 
characteristics and attributes of hydrologic catchments are needed 
to generalize ML and δ models, as well as identifying the region- 
specific model approach. Knoben et al. (2024) describe the model 
selection problem as determining which models provide close- to- 
best performance across gauged basins using KGE uncertainty, 
finding that just four models can cover 95% of basins, but their 
approach does not address ungauged basins, whereas we use ma-
chine learning to predict the most appropriate ensemble of models 
at locations without gauged data based on catchment attributes.

To summarize and graphically outline this technical note, 
Figure 1 shows (right) evaluating distributed catchments with 
a downstream gauge, (left) model selection based on ensemble 
model weights, (center right) δ conceptual modeling, and (cen-
ter left) role of static catchment attributes for regionalization to 
ungauged basins.

2   |   Methods

2.1   |   Data and Models

2.1.1   |   CAMELS Catchments

The experiments presented in this note utilize the Catchment 
Attributes and Meteorological dataset for Large Sample Studies 
(CAMELS; Newman et  al. 2015; Addor et  al. 2017) for model 
training, calibration, and validation. The US National Center 

FIGURE 1    |    Graphical project flowchart and summary. This figure shows four distinct, but interwoven project components including: (left) se-
lecting the right model/s for each individual catchment, (left center) analysis of the attributes best suited for regionalization of models, (right center) 
utilizing differential conceptual modeling to improve model performance and overcome the burden of calibration/regionalization, and finally (right) 
distributed ungauged catchments contributing to a downstream gauge, highlighting the need to assess model performance in ungauged catchments.

https://github.com/NOAA-OWP/ngen
https://github.com/NOAA-OWP/ngen
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for Atmospheric Research curated these data (NCAR; https:// 
ral. ucar. edu/ solut ions/ produ cts/ camels, accessed March 2020). 
CAMELS data include corresponding daily streamflow records 
from US Geological Survey (USGS) gauges, and meteorological 
forcing data. We use hourly streamflow records compiled by 
Gauch et al. (2021).

2.1.2   |   National Water Model (NWM)

We include streamflow output from the 25- year (1993–2019) 
retrospective simulation by the NWM version 2.1 (https:// docs. 
opend ata. aws/ nwm-  archi ve/ readme. html, accessed February 
2024). NWM versions 3.1 and below apply Noah- MP (Niu 
et  al.  2011) on a 1 km grid, and adds surface and lateral shal-
low subsurface routing on a 250 m grid, 1- D hydrologic channel 
routing, and a conceptual groundwater model to provide hydro-
logical forecasts for the entire contiguous U.S., Hawaii, Puerto 
Rico, and portions of Alaska. A detailed background on NWM is 
provided by Cosgrove et al. (2024).

2.1.3   |   Nextgen Hydrofabric (Hydrofabric)

This hydrofabric is used in the “Distributed catchments” ex-
periment described below. The hydrofabric is a user- defined 
realization of the hydrologic features of the landscape. NOAA 
and the USGS have jointly developed a set of tools called “hyRe-
factor” that allow a user to parse the national reference hydro-
fabric, which was based on the NHD+ dataset. These tools 
allow the user to specify catchments and flow paths, a desired 
catchment size distribution, and stream length between ad-
jacent channel junctions. The hydrofabric consists of four es-
sential components as defined in the OGC WaterML 2.0, Part 
3 Hydrologic Features (HY_Features) conceptual data model: 
catchment divides, flow paths, water bodies, and the network 
topology defined at connectors among the other three elements. 
Static attributes essential for runoff and routing modeling can 
be generated for each catchment as ancillary data. The hydro-
fabric is defined using software and data from open, reproduc-
ible hydrological analyses (Johnson 2022). The Nextgen NWM 
hydrofabric realizes catchments at a scale of 3–15 km2, and im-
poses minimum channel reach lengths of 500 m.

2.1.4   |   HydroAtlas

We use HydroAtlas static attributes (Linke et al. 2019) to test the 
sensitivity of large- sample ML and δ conceptual modeling for 
effective regionalization. There are 280 HydroAtlas attributes, 
which include physical, biological, and climatological basin 
characteristics. We processed these to correspond to the hydro-
fabric basins. Then, for model training, we averaged hydrofabric 
basin attribute values to represent the CAMELS basins.

2.1.5   |   Long Short- Term Memory Network (LSTM)

LSTM is a form of recurrent neural network (RNN) distin-
guished by its ability to capture and maintain information 
about the state and dynamics of a system over extended periods. 

LSTMs incorporate a gated mechanism, including input, output, 
and forget gates, which enhance the network's ability to learn 
from long- term dependencies by mitigating the vanishing gra-
dient problem encountered in other RNN architectures. This 
LSTM operates on a 1- h time step and is one of the initial models 
compatible with Nextgen (Frame 2022, Chapter 5).

2.1.6   |   Conceptual Functional Equivalent (CFE) to 
the WRF- Hydro- Based National Water Model

The NOAA CFE model (Ogden et  al.  2024) applies appropriate 
conceptualizations to replace the computationally expensive 
250 m routing grid use in WRF- Hydro while retaining similar 
water balance features, providing a simplified version of the NWM 
(https:// github. com/ NOAA-  OWP/ cfe, accessed February 2024). 
The CFE model applies the same rainfall partitioning scheme and 
groundwater nonlinear reservoir, while simplifying vadose zone 
modeling. The model applies a geomorphological instantaneous 
unit hydrograph for surface flow routing, and a Nash Cascade for 
lateral subsurface flow routing from catchments. CFE eliminates 
the need for the NWM's detailed spatial discretization, offering a 
computationally efficient approach. CFE is one of the initial mod-
els compatible with Nextgen (Ogden et al. 2024; Cunha et al. 2021).

2.2   |   Model Framework Constraints

The problem we are addressing is identifying the region- specific 
most performant multi- model ensemble approach for large- scale 
hydrologic forecasting. This task requires that Nextgen models 
conform to specific requirements for compatibility.

2.2.1   |   Basic Model Interface (BMI)

Nextgen uses BMI as a common model code architecture and 
component- based abstraction enabling the integration of plug- 
and- play models in a heterogeneous modeling framework 
(Peckham et al. 2013; Hutton et al. 2020).

2.3   |   Experimental Design

2.3.1   |   Model Performance

We evaluate streamflow predictions against stream gauges 
using four metrics of performance. Nash–Sutcliffe Efficiency 
(NSE) measures the relative magnitude of the residual variance 
compared to the variance of observations with values ranging 
from –∞ to one and values above zero indicate predictions more 
accurate than the mean observed data (Nash and Sutcliffe 1970). 
Normalized NSE (NNSE) adjusts NSE by normalizing the data 
between zero and one, making it suitable for comparing datasets 
across different scales. Kling–Gupta Efficiency (KGE) combines 
correlation, variability, and bias into one statistic to provide a 
holistic measure of model accuracy (Gupta et al. 2009). For NSE, 
NNSE, and KGE, a score of one represents optimal performance. 
The flow duration curve (FDC) describes the frequency and 
magnitude of flows, comparing the percentage of time- specific 
flow rates are exceeded.

https://ral.ucar.edu/solutions/products/camels
https://ral.ucar.edu/solutions/products/camels
https://docs.opendata.aws/nwm-archive/readme.html
https://docs.opendata.aws/nwm-archive/readme.html
https://github.com/NOAA-OWP/cfe
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2.3.2   |   Distributed Catchments

The USGS stream gauge network across the United States has 
a median catchment area of 167 km2. Therefore, the models in 
Nextgen will be deployed on catchments smaller than the gauged 
watersheds of which they are part. We demonstrate that an LSTM 
trained on the gauged catchment areas can be applied to catch-
ments at the finer spatial resolution of the Nextgen hydrofabric.

We applied the LSTM to the HUC 01 (New England) region. 
Streamflow in HUC 01 results from snowmelt, rainfall, and 
rain- on- snow events. Groundwater contributions to streamflow 
are significant in this region, which is typified as postglacial 
landscape with thin, coarse soils overlying bedrock, and broad 
meadows infilled with fine sediments and organics. The hydro-
fabric for this region includes about 10,000 catchments with a 
combined drainage area of 191,020 km2. The HUC 01 region in-
cludes 26 CAMELS basins. We compared the FDC from each 
hydrofabric catchment with the FDC from stream gauges corre-
sponding to CAMELS basins.

2.3.3   |   Multi- Model Ensemble Versus Best- Predicted 
Model (Model Selection)

The problem of selecting the most performant model for each 
catchment is challenging. A few automation algorithms exist 
to optimize model structure and parameters simultaneously 
(Spieler et al. 2020; Chlumsky et al. 2021). Our approach uses 
a random forest regressor (RFR) to predict the most performant 
multi- model ensemble of streamflow predictions. We evaluate 
our approach on basins that are not included in the training set 
of the RFR, assuring suitability for ungauged catchments.

To identify the most performant multi- model ensemble approach 
in each catchment, our framework trains RFR on a large sam-
ple of catchments to predict model performance based on catch-
ment attributes. We trained/calibrated four models using data 
from 495 CAMELS basins across CONUS using. The diverse 
set of candidate models included: two existing BMI- compliant 
models, CFE (conceptual) and LSTM (deep learning), the NWM 
v2.1 (physics- inspired), and a simple linear (regression) model 
predicting streamflow directly from precipitation. These models 
are used to demonstrate the identification of the most perfor-
mant multi- model combinations.

The normalized Nash–Sutcliffe (NNSE) from each model simu-
lation and CAMELS catchment attributes (Newman et al. 2015; 
Addor et  al. 2017) were used to train the RFR, to predict the 
comparative model performance and thus advise model selec-
tion. A weight is placed on the model prediction of a basin based 
on the predicted NNSE value of each model, for any particular 
basin. The resulting multi- model ensemble streamflow predic-
tion for each basin (Q∗) is the weighted sum:

of the ensemble member's (i) streamflow (Qi) values. We included 
a threshold for including a candidate model that the predicted 

NNSE must be within 0.2 of the highest predicted NNSE, other-
wise it is dropped from the ensemble.

After the models are configured within the decision support 
system, an estimate of model performance for any basin can be 
obtained using only catchment attributes. We expect to provide 
users of Nextgen with a reproducible workflow for applying the 
most performant multi- model ensemble for any given hydro-
fabric catchment using only widely available static attributes, 
which will ensure its applicability across CONUS.

2.3.4   |   Differentiable Parameter Learning Conceptual 
Hydrologic Models (δ Conceptual Models)

We implemented the CFE model using a differentiable (δ) 
platform (PyTorch) to enable gradient tracking through the 
model. Through gradient descent, the conceptual states of CFE 
trained a neural network (NN) to learn parameters, which in 
our case are time- varying. This integration of NN, and dif-
ferentiable CFE, is termed δ- CFE, following the experiments 
demonstrated by Tsai et al. (2021) and Feng et al. (2023). The 
predicted, dynamic, parameters are: saturated vertical hydrau-
lic conductivity (Ks) [m s−1] and the primary groundwater flux 
coefficient (Cgw) [h−1]. By using differentiable modeling, we 
can optimize streamflow output based on internal dynamics 
of the δ- CFE, allowing for efficient learning, and prediction, of 
the system state and mass balance transition at every 1- h time 
step. We tested our δCFE against a standard CFE to ensure our 
δCFE makes identical predictions to the soon- to- be operational 
version. We also tested to ensure that δCFE recovers synthetic 
parameters, verifying the embedded NN within δCFE can 
learn known parameters from a digital twin hydrograph. Our 
model fully complies with BMI standards, keeping its direct 
applicability to Nextgen.

2.3.5   |   Sensitivity to Static Attributes

The need for static attributes as model inputs to represent true 
basin characteristics, for regionalization and ungauged predic-
tions, cannot be understated. Yet, no comprehensive sensitivity 
test of static attributes has been presented in the literature. This 
is true for individual model performance for LSTM and δ concep-
tual models, and for model selection criteria. Deardorff  (2022) 
demonstrated that slight differences in calculations of static at-
tributes can severely degrade LSTM performance. Using a spa-
tially complete static attribute dataset (HydroAtlas) eliminates 
the need to reproduce static attribute calculations, which de-
creases the potential for errors in the model inputs.

To explore added skill provided from static attributes (i.e., 
NOAH- MP parameters) supplied to non- process- based mod-
els readily available within the current NWM framework, we 
train an ensemble of LSTMs and review their performance. 
Secondly, we proxy more complicated subsampling of rele-
vant hydrological and contextual states via geospatial cen-
troid sampling of HydroAtlas attributes overlapping NWM 
hydrofabric generations. To this end, we generate hydrofabric 
features covering the spatial extents of the CAMELS basins, 

Q∗
=

�n

i=1

�

NNSEi
∑n

j=1

�

NNSEj
� ∗Qi
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a common benchmarking extent used for evaluating LSTM 
streamflow models. Next, we expand the number of static at-
tributes available in each hydrofabric feature by sampling the 
281 hydro- environmental attributes in the HydroAtlas data-
set using each hydrofabric feature catchment spatial extent. 
We perform a sensitivity analysis of these sets of attributes on 
LSTM performance to determine if there is a need for more 
hydro- environmental contextual information in the Nextgen 
framework. We aim to inform the decision of what attributes 
to include in the operational Nextgen hydrofabric. As the hy-
drofabric has a finer spatial discretization than CAMELS, our 
results will help determine the role of attribute heterogeneity 
on model performance.

3   |   Results and Discussion

3.1   |   Distributed Catchments

Figure 2 shows the average flow duration curve (FDC) for the 
example simulation period across 1000 randomly chosen HUC 
01 sub- catchments over the 3- year simulation period, as com-
pared to the observed flows from CAMELS catchments within 
the region. The average of predicted streamflows match up well 
with the higher flows (lower percent exceedance), but tend to 
slightly overestimate the lowest flows (highest percent exceed-
ance). It is known that both ML and δ models struggle to predict 
low flows (Feng et al. 2023). In this particular case, however, we 
are predicting runoff on catchments much smaller (3–15 km2) 
than the training set of CAMELS basins with areas up to 
20,000 km2. The minimum and maximum FDC of the HUC 01 
LSTM Nextgen have a much greater variation than the observed 
CAMELS FDC. This is to be expected, given the large number 
of Nextgen hydrofabric catchments.

The simulated catchment responses come from watersheds with 
areas that are much smaller than those contributing to the gaug-
ing stations on which the LSTM was trained. This demonstrates 
that the LSTM can make effective runoff predictions at each 
catchment within the hydrofabric, even when it is trained on 
larger, gauged, watersheds. The conceptual and process- based 
modules within Nextgen require calibration, which will in-
clude some sort of regionalization strategy to apply to ungauged 
basins. The LSTM does not need to be calibrated in the same 
manner, and no regionalization is required, as LSTM has been 
shown to make predictions in ungauged basins with median 
NSE of 0.69 (Kratzert et al. 2019).

In the Nextgen framework, a routing scheme is required to 
combine the runoff through a network of smaller catchments, 
effectively creating a spatially distributed LSTM model. There 
is a lingering question of whether or not the LSTM model should 
be trained in a manner that includes this routing scheme. 
A similar approach was taken by Yu et  al.  (2024) and Yang 
et  al.  (2024), further demonstrating the suitability of LSTM 
with routing for a spatially distributed simulation; however, 
these implementations operate on a daily time step, whereas 
our results are simulated with an hourly timestep. Vrugt (2024) 
advocates for distribution- based calibration/training mod-
els and evaluation. Training the LSTM on the flow duration 
curve itself, rather than a squared error metric, could be more 

suitable for this type of operational environment, including 
this distribution- based evaluation.

3.2   |   Model Selection

Figure  3 illustrates the distributions of model performance in 
the form of the cumulative distribution (top) and box plots (bot-
tom) of the performance metric NNSE for the LSTM (predictions 
in ungauged basins), CFE, NWM v. 2.1, and a linear (regres-
sion) model. The LSTM results are from basins withheld from 
the training set, while the other three models were calibrated/
trained on the individual basin being evaluated. Also included 
in the figure are performance distributions of the most per-
forming model of the four (referred to as the best actual model; 
BAM), the best model predicted by the RF (BPM), and the multi- 
model ensemble with weights predicted by the RF (i.e., weighted 
ensemble; WE). These results are meant to demonstrate the ef-
ficacy of model selection, not to demonstrate the superiority of 
any one particular model.

For catchments with NNSE values above approximately 0.6, 
the performance of the WE predictions closely matches that 
of the best actual model. Interestingly, the multi- model en-
semble streamflow prediction remains the most effective 
approach for catchments with NNSE values below 0.6, sug-
gesting its robustness across a range of hydrologic conditions. 
Notably, the multi- model ensemble generally outperforms the 
LSTM model, which stands as the most effective single model 
in the study.

Employing machine learning (ML) to determine the optimal 
weights for a multi- model ensemble streamflow prediction could 
ease the calibration process for hydrologic models across diverse 
regions and catchments. However, this approach necessitates 
running all candidate models with predicted ensemble weights 
significantly greater than zero across each appropriate catch-
ment, which might offset the computational efficiencies gained, 
especially in scenarios where computationally streamlined 
models like CFE could be directly applied. This trade- off high-
lights a crucial consideration in the balance between achieving 

FIGURE 2    |    Average, maximum, and minimum flow duration 
curves for HUC 01, New England, from streamflow observation and 
model predictions using the LSTM module within the Next Generation 
U.S. National Water Model (Nextgen).
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optimal model performance and maintaining computational ef-
ficiency in large- scale hydrologic modeling efforts.

3.3   |   Differentiable Parameter Learning 
Conceptual Hydrologic Models

Figure 4 presents a hydrograph from the δCFE model (middle), 
along with associated precipitation and temperature data (top), 
and the time series for dynamic parameters Cgw (the second from 
the bottom) and Ks (bottom). The hydrograph demonstrates 
that δCFE closely matches the observed peak runoff events 
and shows a sharper recession curve compared to its calibrated 
counterpart, indicating a distinct response in the δ model's sim-
ulation of runoff processes.

The δCFE matching of observed peaks is the result of the dy-
namic parameters adjusting to release more water than usual 
when a stormflow- generating precipitation event occurs. The 
sharper recession curve following peak events suggests an ac-
celerated drainage effect caused by the model's depleted state 
values. Similar behavior has been observed in the δ version of 
another conceptual model called the Simple Hydrologic Model 
(Espinoza et al. 2024). While this feature allows δCFE to align 

closely with observed peaks, it may result in an underestima-
tion of the antecedent storage state for the subsequent rainfall 
events. Song et al. (2024) proposed a capillary rise term to allow 
more vertical movement of water to fill in these depleted states 
as a potential solution that improves low- flow predictions. The 
predicted time- varying Ks is smaller than the original value, 
and the time- varying Cgw is larger. The effect of greater equifi-
nality is potentially much larger with time- varying parameters. 
Despite the advantages of employing differentiable parameter 
learning for enhanced model performance, there is a risk that 
such δ conceptual models may misrepresent physical states and 
processes of hydrologic systems, yet be interpreted as physically 
representative of the hydrological system.

3.4   |   Sensitivity to Static Attributes

Figure 5 depicts the variation in model performance, measured 
by the Nash–Sutcliffe Efficiency (NSE), in predicting hydro-
logic conditions for ungauged basins under increasing number 
of static attributes. The color gradient from blue to green in the 
figure indicates an increasing count of static attributes sampled 
from the HydroAtlas, revealing how these attributes impact 
model accuracy. Here, we incrementally added static attributes 
from a principal component analysis (PCA) of the HydroAtlas 
attributes. The best median NSE score of 0.62 is made with 10 
PCA attributes. That median NSE score is notably lower than the 
LSTM PUB predictions (0.69) published by Kratzert et al. (2019). 
This discrepancy may come from the different training and test 
splits, the model hyperparameters, or the selected test basins. 
Our purpose here is to assess the relative performance given the 
number of static attributes and the source of data.

To compare against the PCA attributes, we selected any 10 random 
attributes for our model. We found that selecting any 10 random 
HydroAtlas attributes results in median, 75th, and 25th percen-
tile NSE values of 0.61, 0.71, and 0.43, respectively. The optional 
number of HydroAtlas PCA attributes (10) results in median, 75th, 
and 25th percentile NSE values of 0.62, 0.72, and 0.43, respectively. 
This indicates that the PCA preprocessing of static attributes 
contributes nothing of value for model predictability. However, 
this analysis does help us understand the requirements of static 
attributes for model performance. Model accuracy improves as 
the number of HydroAtlas attributes increases to 10; beyond this 
point, adding more attributes lowers performance for this partic-
ular LSTM figuration. It is possible that increasing the number 
of static attributes degrades the performance because the LSTM 
does not have sufficient complexity in the parameter space to learn 
from each variable, or because there is not enough diversity in the 
training data to warrant the number of static attributes.

Static attributes from other sources were also tested. The analy-
sis shows that calibrated parameters from the NOAH- MP model 
fail to provide useful information for LSTM predictions.

4   |   Conclusion and Recommendations

The standards based, model- agnostic Nextgen is structured 
to integrate ML predictions. Incorporating LSTM and δ con-
ceptual models within its diverse modeling environment 

FIGURE 3    |    Cumulative distribution function (top, A) and boxplot 
(bottom, B) of all individual models, the best actual model for each wa-
tershed, the best predicted model for each watershed by the random for-
est regressor (RFR), and ensemble models using weights derived from 
RFR model performance predictions.
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showcases the framework's flexibility and underscores the 
potential for ML- based forecasting improvements to the oper-
ational NWM. The complexities of hydrologic variability and 
model selection will benefit from the implementation of ML in 
the framework.

We recommend the continued development of LSTM as the 
benchmark model for hydrologic predictions within Nextgen, 
due to their proven adaptability and accuracy in streamflow 
forecasting, particularly in ungauged basins. Though the LSTM 
predictions tend to overestimate low- flow conditions, this is 
likely a result of the mismatch of the training catchment scale 
and the simulation catchment scale, which may be addressed 
with distributed- catchment training. Concurrently, the contin-
ued development of δ models should be pursued for their unique 
strength in regionalization and enhancing model performance 
across diverse hydrologic conditions. However, with δ models, it 
is crucial to examine potential degradation of hydrologic states 
that may arise from overly focusing on streamflow prediction 
accuracy. To address this, we recommend simultaneous devel-
opment of pure deep- learning models capable of predicting a 
broader array of hydrologic variables including surface storage 
and subterranean states. These models could offer a more ho-
listic view of watershed dynamics, potentially mitigating the 

risk of oversimplification and ensuring a more comprehensive 
understanding and modeling of hydrologic processes. Looking 
forward, a reconceptualization of hydrologic processes to better 
utilize time- varying parameters may be a path to identifying 
nonlinear, hysteretic and scale- dependent hydrologic process 
representations, finding the Holy Grail of scientific hydrology 
(Beven 2006).

The results shown in the Model Selection section suggest that 
the problem of finding the most performant model in a partic-
ular basin can be approached using a heterogeneous model en-
semble. While our results are consistent with previous studies 
that struggled to identify an “optimal” model for each individ-
ual basin with machine learning (e.g., Nearing et al. 2024), we 
showed that machine learning can offer effective strategies to 
combine multiple models, even in ungauged basins.

Immediate future progress should expand δCFE to include 
more time- varying parameters and performance assessment in 
ungauged basins compared to standard regionalization meth-
ods. Such advances could be coupled with the model selection 
framework, which would inform the need for regionaliza-
tion strategies, and directly compare pure deep learning, pure 
process- based models, and somewhat in- between δ conceptual 

FIGURE 4    |    Time series from δCFE for a Nehalem river, OR (USGS gauge 13,401,000), including the input forcings (top), hydrographs (middle), 
and dynamic parameters used in the simulation (bottom two).
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models. A continued attribute analysis would inform and re-
fine the criteria for model selection, ensuring that the choice of 
models is not only based on current capabilities but also on a 
nuanced understanding of how different catchment attributes 
influence model accuracy and reliability.

A potential limitation within the current Nextgen software ar-
chitecture, in terms of ML, is its inability to train ML models (it 
can only make inferences with previously trained models). As it 
stands, ML models destined for Nextgen must be trained using 
external tools, with their weights saved and then imported into 
Nextgen. This external training requirement introduces an addi-
tional step that could potentially slow down the iterative process 
of model development and operationalization.

This technical note is timely given the current surge in re-
search and development activities for Nextgen, where ma-
chine learning (ML) is becoming a focal point of interest. We 
underscore that ML integration into hydrologic modeling is 
not a novel pursuit within our community; rather, it is a path 
we have collectively been navigating. We aim to ensure that 
our findings and methodologies contribute meaningfully to 
the transition from research to operational advancements. By 
sharing our experiences and insights, we hope to guide and 

enrich the ongoing efforts to harness ML's full potential in 
improving hydrologic forecasting and model selection within 
Nextgen, and more broadly research to operations in hydrol-
ogy (Burian et al. 2023).
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