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Abstract

It has been proposed that conservation laws might not be beneficial for accurate

hydrological modelling due to errors in input (precipitation) and target (streamflow)

data (particularly at the event time scale), and this might explain why deep learning

models (which are not based on enforcing closure) can out-perform catchment-scale

conceptual and process-based models at predicting streamflow. We test this hypoth-

esis with two forcing datasets that disagree in total, long-term precipitation. We ana-

lyse the roll of strictly enforced mass conservation for matching a long-term mass

balance between precipitation input and streamflow output using physics-informed

(mass conserving) machine learning and find that: (1) enforcing closure in the rainfall-

runoff mass balance does appear to harm the overall skill of hydrological models;

(2) deep learning models learn to account for spatiotemporally variable biases in data

(3) however this ‘closure’ effect accounts for only a small fraction of the difference

in predictive skill between deep learning and conceptual models.
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1 | INTRODUCTION

Deep learning (DL) models are becoming the standard benchmark for

predictive hydrologic modelling in the current literature because of

their high accuracy relative to conceptual models (Nearing, Kratzert,

et al., 2020), as well as their ability to extrapolate to new locations

(Kratzert et al., 2018; Kratzert, Klotz, Herrnegger, et al., 2019) and

extreme events (Frame et al., 2022). There has been a recent push to

combine deep learning with physical theory to (i) gain better process

understanding; and (ii) improve predictive accuracy, especially under

out-of-sample conditions (Jia et al., 2021; Reichstein et al., 2019; Shen

et al., 2021; Willard et al., 2021). There have been several recent

attempts to build hybrid DL models (sometimes referred to ‘physics-
informed’ or ‘theory-guided’, e.g., Bennett & Nijssen, 2021; Daw

et al., 2020; Hoedt et al., 2021; Jiang et al., 2020; Karniadakis

et al., 2021; Nearing, Research, et al., 2020; Pelissier et al., 2019; Tsai

et al., 2021; Xie et al., 2021; Zhao et al., 2019). We therefore think it

is important to take a step back and explore if (and what) basic com-

ponents of physical theory might actually be beneficial for hydrologic

prediction. The use of a single-constraint model like the MC-LSTM

helps us understand hydrological processes through testing hypothe-

ses of individual relevant processes (Nearing, Research, et al., 2020).

In this paper, we test one hypothesis in particular: we use physics-

informed machine learning to explore the longstanding assumption that

mass conservation should be the foundation of hydrological models.

The first physical law introduced formally by Chow et al. (1988, equa-

tion 1.3.5) (a standard introductory hydrology textbook) is:

dS=dt¼ I tð Þ�O tð Þ ð1Þ

where the change of a system's mass storage (S) with respect to time

(t) is equal to total mass input (I) minus total mass output (O). This is
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the first physical constraint placed on the transfer function between

inputs and output of a hydrological system (i.e., Chow et al., 1988,

equation 1.3.1).

While conservation laws are considered to be a fundamental truth

about (classical scale) systems in our physical world, it is not necessar-

ily the case that this makes them a proper or useful foundation for

either understanding or modelling watershed systems. This distinction

is motivated by Beven (2020), who proposed that the closure problem

might explain the poor performance of conceptual and physically-

based (PB) hydrology models relative to DL:

given the epistemic uncertainties in water and energy

balances, then this [conservation constraints] might

not necessarily be advantageous in obtaining better DL

predictions if, for example, the observational data do

not themselves provide consistent mass and energy

balance closure.

In other words, conceptual and PB models typically demand a degree

of closure that may not necessarily be achievable given sparse and

error-prone observation data, and (Beven hypothesized that) the

superior performance of DL might be due to its ability to learn and

account for consistent error structures present in the input–output

data. In practice, PB models sometimes account for error prone data

with pre- and post-processing, as well as data assimilation, however

pre- and post-processing is not necessary when using DL, as these

steps can be learned directly from training data (Frame et al., 2021).

The proposal explains poor rainfall-runoff model calibration and

performance as being a consequence of so-called ‘disinformation’ in
data (e.g., Beven et al., 2008; Beven & Westerberg, 2011; Sivapalan

et al., 2003). In addition to the observational uncertainty present in

data used for driving and evaluating models, there is also uncertainty

regarding what actually constitute the true physical inputs and losses

from a hydrologic system—for example, mass contributions to the sys-

tem through natural springs and anthropogenic water resources can

come from outside of the watershed ‘boundary’ and are not often

directly observable or represented in the available data set. Beven's

hypothesis is that these types of effects might explain the relative

accuracy of DL streamflow models, due to their not being constrained

to conserve mass.

In this paper, we place a bound on this ‘closure’ effect (i.e., an

upper bound on the information loss due to enforcing closure over

error-prone data), and show two things:

• DL is able to learn and account for systematic (but spatiotempo-

rally dynamic) errors in data, and

• the closure effect does not explain the majority of the performance

gap between PB models and DL models of streamflow.

The long short-term memory (LSTM) neural network was chosen

as the deep learning architecture for this study because (1) it is the

best performing deep learning model for the rainfall-runoff process,

and (2) because we have a directly comparable mass conserving (MC-

LSTM), and non-mass conserving version available. We test the ability

and performance of the mass conserving MC-LSTM, a DL model with

an architecture designed to strictly enforce mass conservation at

every timestep, to performing its namesake task (mass conservation),

by assessing the long-term bias of predicted runoff (Chawanda

et al., 2020) in a large-sample dataset (Gupta et al., 2014). The long-

term analysis of mass balance is necessary to capture hydrologic pro-

cesses that span multiple events (e.g., interflow) and even multiple

years (e.g., snowpack). To be clear, we are not questioning whether

hydrologic processes in the real world are governed by the physical

concept of mass conservation. What we are questioning is whether a

testable, scale-relevant theory of watersheds should be based on this

principle. Alternatively, it is possible that no successful scale-relevant

theory of watersheds has been developed to-date because the funda-

mental conceptual basis for a ‘watershed’ is itself incorrect; the typi-

cal ‘fixed catchment control-volume’ represented by our watershed

delineations with closed internal states cannot represent mesoscale

storm-system scales and groundwater aquifer scales.

2 | DATA AND METHODS

We designed an experiment to test the hypothesis proposed by

Beven (2020) that the lack of mass conservation in DL rainfall-runoff

models explains the difference in skill relative to PB models that are

constrained by closure. The basic experiment is as follows. We use

two meteorological data sets with a large, nonlinear, and location-

specific disagreement in long-term precipitation totals, assuming that

at least one of these datasets is biased, to benchmark three models:

(i) a standard PB model calibrated per-basin; (ii) a standard DL model

trained regionally (over all basins, not per-basin), and (iii) a physics-

informed DL model that is constrained to enforce mass conservation

trained regionally (in the same way as the standard DL model). Our

goal is to understand how much of the difference in skill between the

PB and DL models can be accounted for by forcing closure on

biased data.

2.1 | Data

Several recent modelling studies used open community data sets and

consistent training/test procedures that allow for results to be directly

comparable (Frame et al., 2021; Gauch, Kratzert, et al., 2021; Gauch,

Mai, & Lin, 2021; Klotz et al., 2021; Kratzert et al., 2021; Kratzert,

Klotz, Shalev, et al., 2019; Newman et al., 2017). We continue that

practice here. Specifically, we used the Catchment Attributes and

Meteorological Large Sample (CAMELS) data set curated by the US

National Center for Atmospheric Research (NCAR; Addor et al., 2017;

Newman et al., 2015). The CAMELS data set consists of daily meteo-

rological and discharge data from 671 catchments in CONUS ranging

in size from 4 to 25,000 km2 that have largely natural flows and long

streamflow gauge records (1980–2008). Newman et al. developed

CAMELS as a data set for community model benchmarking and by

2 of 20 FRAME ET AL.

 10991085, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14847 by U

niversity O
f A

labam
a T

uscaloosa, W
iley O

nline L
ibrary on [16/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



excluding basins with (i) large discrepancies between different

methods of calculating catchment area; and (ii) areas larger than

2000 km2. This results in the large-sample (Gupta et al., 2014) data

set with 531 basins that has been used by all of the benchmarking

studies cited above. In the current study, we had to omit one of these

531 basins due to a data constraint that will be explained below in

Section 2.3.

CAMELS includes daily discharge data from the USGS Water

Information System, which are used as training and evaluation targets.

CAMELS also includes multiple daily meteorological forcing data prod-

ucts (Daymet, NLDAS, Maurer) that are used as model inputs, shown

in Table 1. CAMELS also includes several static catchment attributes

related to soils, climate, vegetation, topography, and geology (Addor

et al., 2017) that are used as input features to the DL models. We

used the same input features (meteorological forcings and static

catchment attributes) that are listed in Table 1 by Kratzert, Klotz, Sha-

lev, et al. (2019).

We used Daymet and NLDAS for this project because the dis-

agree in their total precipitation amounts, as shown in Figure 1. The

figure shows that the western basins are scattered about the 1 to

1 line, even though the large magnitude western basins are largely

heteroscedastic, but that the basins from about longitude �100 to

�70 tend to favour Daymet as the magnitude increases. This system-

atic difference must be either a positive Daymet bias or a negative

NLDAS bias in long-term precipitation totals, and this allows us to test

hypotheses about modelling behaviour when the input data are sys-

tematically biased.

This bias can be seen clearly in some of our results presented in

Section 3.2. In that section, we describe a regional analysis of the total

cumulative streamflow bias grouped for different regions of CONUS.

The regions were delineated according the United States Geological

Survey (USGS) Water Resources Regions outlined in Water-Supply

Paper 2294 (USGS, 1987). This includes 18 distinct regions, but only

17 of which have enough CAMELS basins for meaningful statistics

(leaving out Souris-Red-Rainy, hydrologic unit code 09).

2.2 | Models

2.2.1 | Models inspired by physical concepts

The conceptual model that we used as a benchmark was the Sacra-

mento Soil Moisture Accounting model (SAC-SMA) with SNOW-17

and a unit hydrograph routing function. This is the model used by

(Newman et al., 2017) as a basis for standardized benchmarking with

the CAMELS data set, however we re-calibrated SAC-SMA to be con-

sistent with our training/test splits. We used the Python-based SAC-

SMA code and calibration package developed by Nearing, Sampson,

et al. (2020), which uses the SpotPy calibration library (Houska

et al., 2019). We use the Dynamically Dimensioned Search algorithm

with 10 000 model runs. SAC-SMA was calibrated separately at each

of the 531 CAMELS basins using the three train/test splits outlined in

Section 2.2.3, and get results comparable to Newman et al. (2017).

We also benchmarked the U.S. National Water Model (NWM

using the NOAA National Water Model CONUS Retrospective Data-

set; https://registry.opendata.aws/nwm-archive/, accessed December

2021). The NWM is based on physics-inspired equations, but it has

been argued that these types of models are still conceptual in nature,

but applied to the grid scale (Beven, 1989), so we refer to non-DL

models as conceptual. We present the results of the NWM bench-

marks in Appendix, rather than the main body of this paper because

(i) the NWM is only available for NLDAS forcing; and (ii) we are not

able to calibrate the NWM to match our other models, so the NWM

results are not directly comparable. A complete description of the

NWM is provided in Appendix along with a complete set of figures.

2.2.2 | Deep learning models

The Long Short-Term Memory (LSTM) network is the current state-

of-the-art model for predicting streamflow at the watershed scale.

The LSTM is a recurrent neural network with an explicit state space,

and explicit controls on input-state and state-output relationships, as

well as explicit controls on memory timescales, which makes it suit-

able for at least many dynamical systems applications. The LSTM does

not enforce conservation laws, which means that there is potential for

predicted runoff to violate Equation (1).

TABLE 1 Forcing products from the CAMELS dataset

Forcing
product Description Citation

NLDAS North American Land Data Assimilation

System. Spatial resolution is 1/8th-

degree, and the temporal resolution is

hourly. The data span 1979 to present.

Data can be downloaded in their native

GRIB format, but CAMELS provides

basin averages. This product is oriented

towards land/hydrology modelling. The

non-precipitation land-surface forcing

fields are derived from the analysis fields

of a North American Regional Reanalysis

(NARR). Surface pressure, longwave

radiation, air temperature and specific

humidity are adjusted vertically to

account for terrain height.

Xia et al.

(2012)

Daymet Daily Surface Weather Data for North

America. Spatial resolution is

1-km � 1-km in Lambert Conformal

Conic projection. The data span 1980

through 2015. Data can be downloaded

in their native netCDF file formats, but

CAMELS provides basin averages.

Several of the variables are derived from

selected meteorological station data by

interpolation and extrapolation

algorithms. Data are assembled by

parameter and year with each yearly file

containing a time dimension of

365 days.

Thornton

et al.

(2014)

FRAME ET AL. 3 of 20
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The Mass-Conserving LSTM (MC-LSTM) is also a recurrent neural

network with an explicit state space and explicit input-state and

state-output relationships. Both the LSTM and MC-LSTM use the

same forcing variables, but the MC-LSTM distinguishes between mass

inputs (with a specific unit of mass to conserve through the model)

and auxiliary (no conservation enforced) forcing inputs, shown in

Table 2.

The internal calculations of the MC-LSTM ensure mass-conserva-

tion, at every timestep, between any number of inputs (here precipita-

tion) and outputs (here streamflow). In reality, precipitation and

streamflow are not the only fluxes of water into or out of a catch-

ment. The MC-LSTM does not account for unobserved water sources

other than precipitation, and accounts for unobserved sinks

(e.g., evapotranspiration, aquifer recharge and anthropogenic water

resources) using a subset of cell states to accumulate mass that does

not translate to streamflow. The streamflow output is the sum over

the outgoing mass vector, excluding that subset of cell states repre-

senting unobserved mass sinks. Further details of this model are

described in Nearing, Sampson, et al., 2020, Hoedt et al., 2021 and

Frame et al., 2022. An example time series plot of predicted cell

states, including the subset of cell states representing mass sinks, is

shown in Hoedt et al. (2021) in their Figure B1.

2.2.3 | Training

We used daily meteorological forcing data and static catchment attri-

butes data as inputs features for the LSTM and MC-LSTM, and we

used daily streamflow records as training targets with a normalized

squared-error (NSE*) loss function that does not depend on basin-

specific mean discharge (i.e., large and/or wet basins are not over-

weighted in the loss function):

NSE� ¼ 1
B

XB
b¼1

XN
n¼1

byn�ynð Þ2

s bð Þ þϵ
� �2 ð2Þ

where B is the number of basins, N is the number of samples (days)

per basin B, byn is the prediction for sample n (1≤ n≤N), yn is the corre-

sponding observation, and s bð Þ is the standard deviation of the dis-

charge in basin b (1≤ b≤B), and ϵ is a small constant for numerical

stability (we used 0.1), calculated from the training period (see Krat-

zert, Klotz, Shalev, et al., 2019).

We trained both the standard LSTM and the MC-LSTM using the

same training and test procedures outlined by Kratzert, Klotz, Shalev,

et al. (2019). Both models were trained for 30 epochs using sequence-

to-one prediction to allow for randomized, small minibatches. We

used a minibatch size of 256 and, due to sequence-to-one training,

each minibatch contained (randomly selected) samples from multiple

basins. The standard LSTM had 128 cell states and a 365-day

sequence length. Input and target features for the standard LSTM

F IGURE 1 Comparison of the total
precipitation from NLDAS and Daymet for
each of the 530 basins, colour-coded by
the longitudinal coordinate of the stream
gauge

TABLE 2 Forcing variables for LSTM and MC-LSTM

Forcing variable Role in MC-LSTM (unit)

Average daily precipitation Mass conserving (mm)

Daily minimum air temperature Auxiliary

Daily maximum air temperature Auxiliary

Solar radiation Auxiliary

Vapour pressure Auxiliary

4 of 20 FRAME ET AL.
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were pre-normalized by removing bias and scaling by variance. For

the MC-LSTM the inputs were split between auxiliary, which were

pre-normalized, and the mass input (in our case precipitation), which

was not pre-normalized. Gradients were clipped to a global norm (per

minibatch) of 1. Heteroscedastic noise was added to training targets

(resampled at each minibatch) with standard deviation of 0.005 times

the value of each target datum. We used an Adam optimizer with a

fixed learning rate schedule; the initial learning rate of 1e-3 was

decreased to 5e-4 after 10 epochs and 1e-4 after 25 epochs. Biases

of the LSTM forget gate were initialized to 3 so that gradient signals

persisted through the sequence from early epochs. The MC-LSTM

used the same hyperparameters as the LSTM except that it used only

64 cell states, which was found to perform better for this model (see

Hoedt et al., 2021). Note that the memory states in an MC-LSTM are

fundamentally different than those of the LSTM due to the fact that

they are physical states with physical units instead of purely informa-

tion states.

Both the LSTM and MC-LSTM were trained on data from

531 CAMELS catchments simultaneously. The train/test period split

was the same split used in previous studies (Hoedt et al., 2021;

Kratzert et al., 2021; Kratzert, Klotz, Shalev, et al., 2019). In this case,

the training period included nine water years from 1 October 1999

through 30 September 2008, and the test period included 10 water

years 1990–1999 (i.e., from 1 October 1989 through 30 September

1999). This train/test split was used only to ensure that the models

trained here achieved similar performance compared with previous

studies. Appendix includes an analysis of a different time period (the

train period included water years 1981–1995, and the test period

included water years 1996–2014), which was chosen to overlap with

the NWM retrospective run.

2.3 | Performance metrics

We report two sets of performance metrics. The first set are standard

benchmarking metrics that we report for two reasons: (i) to show that

the models perform similarly with previous benchmarking studies, and

(ii) to allow us to demonstrate a distinction between model perfor-

mance and consistency of long-term mass balance. The second set of

metrics are related to long-term streamflow biases, and allow us to

test our primary hypothesis. These metrics are described in the fol-

lowing two subsections.

2.3.1 | Standard performance metrics

We benchmarked all models using the same set of performance met-

rics that were used in previous CAMELS studies (Gauch, Kratzert,

et al., 2021; Klotz et al., 2021; Kratzert et al., 2021; Kratzert, Klotz,

Herrnegger, et al., 2019; Kratzert, Klotz, Shalev, et al., 2019). A full list

of these metrics is given in Table 3. Each of the metrics was calculated

for each basin separately on the whole test period for the training/

test splits described in Section 2.2.3 (the test period consists of water

years 1990–1999).

2.3.2 | Long-term mass balance

We conducted a long-term mass balance analysis using the absolute

mass bias error for each basin:

total absolute mass bias¼ jPobs:Q�P
sim:QjP

obs:Q
ð3Þ

where Q is the mass flux of streamflow. Note the absolute difference

is taken as the numerator, so that positive and negative biases do not

cancel each other out. The separated positive and negative mass bias

errors for each basin are calculated as

positive mass bias¼ x¼
P

obs:Q�P
sim:QP

obs:Q
, if x>0

0, otherwise

8<
: ð4Þ

and

TABLE 3 Overview of performance benchmarking evaluation metrics for hydrological models

Metric Description Reference/equation Details

NSE† Nash-Sutcliff efficiency Eq. 3 in Nash and Sutcliffe

(1970)

(�∞, 1], values closer to one are desirable.

KGE‡ Kling-Gupta efficiency Skill Score Eq. 9 in Gupta et al. (2009) (�∞, 1], values closer to one are desirable.

Pearson-r Pearson correlation between observed and

simulated flow

α-NSE§ Ratio of standard deviations of observed and

simulated flow

From Eq. 4 in Gupta et al.

(2009)

(0, ∞), values close to one are desirable.

β-NSE¶ Ratio of the means of observed and simulated

flow

From Eq. 10 in Gupta et al.

(2009)

(�∞, ∞), values close to zero are desirable.

Peak-Timing†† Mean peak time lag (in days) between

observed and simulated peaks

Appendix B in Kratzert et al.

(2021)

(�∞, ∞), values close to zero are desirable.

This is a slightly different metric than

described by Kratzert et al. (2021) in that we

report the mean absolute peak time lag.

FRAME ET AL. 5 of 20
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negative mass bias¼ x¼�
P

obs:Q�P
sim:QP

obs:Q
, if x<0

0, otherwise

8<
: : ð5Þ

We used these metrics to provide a general measure the ability of

each model to close the mass balance between precipitation and

streamflow. These metrics require a continuous observation record,

however this requirement is not satisfied for one of the CAMELS

benchmarking basins for the test period of water years 1990–1999,

leading us to discard it from our analysis. It is worth noting that these

are technically volume calculations, and that we assume a constant

liquid density for mass balance.

2.3.3 | Measuring information loss from modelling
constraints

We used an information theoretic perspective to help investigate the

hypothesis, that mass conservation inhibits the performance of

hydrology models. Taking that idea one-step further, every constraint

implemented on a hydrology model loses information from the inputs.

Following the discussion by Nearing and Gupta (2015), we anticipate

an ordering of information content like:

Hstreamflow ≥ Iinput data ≥ ILSTM ≥ IMC�LSTM ≥ ISAC�SMA ð6Þ

H indicates the total entropy of whatever target data we are try-

ing to predict (here a hydrograph in an individual basin). There is some

amount of information in the input data (meteorological forcings and

basin attributes), however the data processing inequality (Cover &

Thomas, 2005, equation 2.122, p. 35) indicates that information is lost

by any model which means that any model prediction contains less

than, or equal to, information about the target data than is contained

in the raw inputs (see Nearing & Gupta, 2015, for further discussion).

Finally, we hypothesize that the constraints in the MC-LSTM (mass

conservation) and the conceptual SAC-SMA model will mean that

these two models provide less information than the LSTM. It is impor-

tant to point out that the latter two terms of Equation (6) are only

hypotheses—it is possible that adding constraints to a trained model

(either a neural network or a calibrated conceptual model) will

improve performance. We consider this unlikely, since adding con-

straints to a DL model serves only to restrict the space of functions

that the model can emulate, however it is always possible that regu-

larization will help avoid local minima during training, or otherwise

compensate for limited information content of training data.

We quantified this (hypothesized) chain of inequalities using two

difference metrics. The first metric is the standard mutual information

(MI) metric calculated by histograms with 100 bins:

MI U,Vð Þ¼
XjUj

i¼1

XjVj

j¼1

jUi
T
Vjj

N
log

NjUi
T
Vjj

jUijjVjj ð7Þ

where U is the observed streamflow, V is the simulated streamflow

and N is the number of records. Mutual information obeys the data

processing inequality, so that the first and second terms of

Equation (6) apply strictly. We calculated the MI in two ways: (1) at

each basin individually for a distribution of values; and (2) using all of

the flows from all basins combined for an overall MI score that does

not account for distinctions between basins.

We also report the skill score outlined by Knoben et al. (2019)

based on KGE metrics:

KGEskillscore ¼KGEmodel�KGEbaseline
1�KGEbaseline

ð8Þ

where the skill score compares the performance of a candidate model

with a baseline. This lets us draw a connection between the bench-

marking metrics in Section 2.3.1 and Equation (6). KGE does not meet

the non-negativity criteria as a formal f-divergence, and thus does not

obey the data processing inequality, and therefore the relationship is

only intuitive. The first level of constraint that we test is the strictly

enforced mass conservation in the MC-LSTM and SAC-SMA. This is

analogous to the third term in Equation (6), and in this case KGEmodel

and KGEbaseline in Equation (8) are the MC-LSTM and the LSTM,

respectively. The second level of constraint is the conceptualization of

the watershed as implemented by SAC-SMA model architecture

(SAC-SMA was calibrated to long data records in each basin, and we

included an ensemble of several calibrated models, each of which

have a unique set of parameters). This is analogous to the third term

in Equation (6), and in this case KGEmodel and KGEbaseline in

Equation (8) are SAC-SMA and the LSTM, respectively (we use the

LSTM instead of the MC-LSTM as the baseline in order to plot a direct

comparison between information lost by the MC-LSTM and

SAC-SMA).

2.4 | Conditionality of the modelling analysis

Uncertainty in this experiment comes from three primary sources:

data, models, and training. These sources are analogous to standard

sources of uncertainty in most hydrology modelling studies: data,

model structure, and model parameters (training is analogous to

calibration).

The hypothesis that we are testing is related to understanding

relationships between data and model uncertainty. Our objective is to

understand how different models deal with uncertainty in data. We

do not explicitly represent uncertainty in data (e.g., probabilistically),

because our experiment does not require this for testing the hypothe-

sis. We treat training/calibration uncertainty by using an ensemble of

eight models, where the only difference between the ensemble mem-

bers are different random weight initializations, and we take the

ensemble mean of streamflow as our final model estimate. This

approach is discussed explicitly for DL models by Kratzert, Klotz,

Herrnegger, et al. (2019), and for the SAC-SMA model by Newman

et al. (2015). Our analysis in Section 3.2 includes a box-and-whisker

plot showing the median, standard deviation and outliers of each per-

formance metric. We also include a complete (second) set of results of

the same analysis on a different time period in Appendix, with results
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that are nearly identical, indicating that our results are not the result

of an anomalous time period.

Our models and training are consistent with previous studies.

Benchmarking results like what are reported in Section 3.1 have been

repeated by several research groups using different basins and differ-

ent data products. Results presented here are consistent with previ-

ous large-sample studies for all models, which provides a degree of

confidence about the modelling results in general. We include 95%

confidence interval of the summary statistics, and these are relatively

low given our large sample size.

3 | RESULTS

3.1 | Model performance

Table 4 provides performance metrics (Section 2.3.1) for the LSTM,

MC-LSTM and SAC-SMA model simulations over the test period

(water years 1990–1999). Most of these scores are broadly equivalent

to the metrics for the same models reported by other studies

(e.g., Kratzert, Klotz, Shalev, et al., 2019). More importantly, these

metrics allow us to test the hypothesis that explicit mass conservation

degrades performance (as a reminder, this hypothesis was proposed

by Beven, 2020). What we are looking for in these metrics is that

either all the mass conserving models perform worse than the non-

constrained LSTM, which would support the hypothesis that mass

conservation is detrimental to models, or that the MC-LSTM with an

explicit mass conserving constraint does as well or better than the

LSTM, which would indicate that the problem with the conceptual

model is not a matter of enforcing closure over erroneous data.

Results show similar average performance between the LSTM

and MC-LSTM, however there were mostly small differences. With

Daymet forcings, the LSTM had a higher KGE score in 323 basins,

with an average difference of 0.06, and the MC-LSTM had a higher

KGE score in 208 basins. With NLDAS forcings, the LSTM had a

higher KGE in 249 basins, while the MC-LSTM had a higher KGE

score in 282 basins, and the average difference between KGE score

was 0.05. In general, the median performance metrics of the two

models were broadly comparable. Notably, both models were, on

average, better across all metrics than SAC-SMA. Overall, these

results suggest that enforcing closure does not explain the differences

between data-based and process-based and conceptual models.

3.2 | Long-term cumulative discharge

Figure 2 shows the cumulative density functions (CDFs) of long-term

cumulative discharge from the 530 CAMELS basins from the models

during the 1989–1999 test period. The LSTM, MC-LSTM and SAC-

SMA all have a similar total mass bias with the NLDAS forcing. SAC-

SMA has the lowest negative mass error, but the highest positive

mass error. The LSTM has the highest negative mass error, but the

lowest positive mass error. The MC-LSTM is generally in between the

LSTM and SAC-SMA. Overall, the LSTM and MC-LSTM predicted

streamflows that result in more accurate long-term cumulative dis-

charge than the calibrated SAC-SMA model. The LSTM and the MC-

LSTM performed roughly similarly on NLDAS, and MC-LSTM slightly

outperformed the LSTM on Daymet. With Daymet forcing SAC-

SMA's streamflow predictions are biased toward a very high positive

mass error.

Figure 3 shows the long-term positive or negative mass biases

distributed across the Contiguous United States (CONUS) from for

the three models with both Daymet and NLDAS forcings. The result

of the SAC-SMA simulation with Daymet forcings shows a clear posi-

tive mass bias error in the eastern half of CONUS. The result of the

SAC-SMA simulation with NLDAS forcings shows a mix of positive

and negative mass bias throughout CONUS. The LSTM and the MC-

LSTM look relatively similar, to each other and for both NLDAS and

Daymet forcing. There is a clear negative mass bias error down the

middle of CONUS from about Montana through East Texas. This Cen-

tral CONUS (CenCon) region (i.e., Missouri, Arkansas-White-Red and

Texas-Gulf) is generally tough to predict, with conceptual, physical

and deep learning models. SAC-SMA also shows a negative mass bias

pattern in the same central CONUS region, though to a lesser spatial

extent and higher magnitude, with Daymet forcings, but not so much

with NLDAS forcings.

Figure 4 shows the mass bias errors for the model runs with Day-

met forcings in box and whisker plots for the U.S. Water Resources

Regions. SAC-SMA shows a very high mass balance error in the

eleven eastern regions, but does much better in the western regions.

TABLE 4 Median performance metrics (plus or minus the 95% confidence interval) across 530 basins calculated on the test period 1990–
1999 with two separate forcing products

Daymet forcing NLDAS forcing

Metric LSTM MC-LSTM SAC-SMA LSTM MC-LSTM SAC-SMA

NSE 0.77 � 0.02 0.76 � 0.01 0.65 � 0.03 0.74 � 0.01 0.74 � 0.01 0.67 �0:02

KGE 0.76 � 0.02 0.76 � 0.02 0.59 � n/a 0.74 � 0.02 0.74 � 0.02 0.68 �0:02

Pearson-r 0.89 � 0.01 0.88 � 0.01 0.83 � n/a 0.88 � 0.01 0.87 � 0.01 0.83 �0:01

Alpha-NSE 0.85 � 0.01 0.84 � 0.01 0.76 � 0.02 0.81 � 0.02 0.81 � 0.02 0.78 �0:02

Beta-NSE �0.04 � 0.01 �0.03 � 0.01 0.06 � 0.01 �0.03 � 0.01 �0.02 � 0.01 �0.01 �0:01

Peak-timing 0.3 �0:03 0.3 �0:03 0.38 �0:06 0.32 �0:03 0.31 � 0.03 0.41 � 0.06
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The LSTM shows a high mass balance error in the Lower Colorado

region, as compared to the MC-LSTM, and the MC-LSTM shows a

higher mass balance error in the Rio Grande region, but the LSTM and

MC-LSTM are relatively similar (more or less) in the other regions. All

three models show relatively high mass bias errors in the CenCon

region, which is the contribution from negative mass bias shown in

Figure 3. SAC-SMA performs worse than the LSTM and the MC-

LSTM in the CenCon region with Daymet forcings.

Figure 5 shows the mass bias errors for the model runs with

NLDAS forcings in box and whisker plots for the U.S. Water

Resources Regions. With NLDAS forcing, SAC-SMA does not have a

consistent mass bias error, as with Daymet. The pattern of SAC-SMA

mass bias error in the western U.S. is generally similar between Day-

met (Figure 4) and NLDAS (Figure 5). The differences between the

LSTM, MC-LSTM and SAC-SMA do not show any obvious patterns.

SAC-SMA and LSTM shows a high mass bias error outlier in the Lower

Colorado region, but MC-LSTM does not. All three models show rela-

tively high mass bias errors in the CenCon region, although SAC-SMA

has a lower mean mass bias error than the LSTM and the MC-LSTM,

but has a higher outlier in Missouri. Kratzert, Klotz, Herrnegger, et al.

F IGURE 2 Distribution of mass balance error across the 530 basins. Top: Cumulative distribution curves of the absolute mass error from
models forced with NLDAS (left) and Daymet (right). Bottom: Cumulative distributions of mass error from models forced with NLDAS (left) and
Daymet (right)
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(2019) show in their Figure 4 that the LSTM scores better in terms of

Nash-Sutcliffe Efficiency than SAC-SMA, which seems to indicate that

mass bias error in the catchment data does not explain the difference

in predictive skill between deep learning and conceptual models.

Appendix includes results from a separate time period, where the

NWM can be compared (with caveats of the inconsistent calibration

period) on the NLDAS forcing data. The overall, spatial, and regional

results are roughly similar for the LSTM, MC-LSTM and SAC-SMA.

F IGURE 3 Geospatial distribution of
long-term positive or negative mass bias
error. The left and right columns show the
results with NLDAS and Daymet
meteorological forcing data, respectively.
The three rows are associated (from top
to bottom) with LSTM, MC-LSTM and
SAC-SMA

F IGURE 4 Regional mass balance errors from LSTM, MC-LSTM and SAC-SMA with Daymet forcings. The main body of each box shows the
median and confidence intervals. The vertical lines extending to the most extreme, non-outlier data points. Souris-Red-Rainy region (Hydrologic
Unit Code 09) is absent due to a lack of sufficient basins
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3.3 | Information loss due to modelling constraints

3.3.1 | Mutual information

The mutual information scores of the combined 530 basins

(concatenated and calculated once across all basins) with NLDAS forc-

ings are: 0.39 (LSTM), 0.37 (MC-LSTM) and 0.34 (SAC-SMA), respec-

tively. The mutual information scores of the combined 530 basins

(concatenated and calculated once across all basins) with Daymet

forcings for models LSTM, MC-LSTM and SAC-SMA are 0.40, 0.37

and 0.33, respectively. Figure 6 shows the CDF plots with mutual

information scores calculated individually for each of the 530 basins.

For both Daymet and NLDAS the CDF curves show that LSTM has

the most mutual information with the observed runoff, followed by

MC-LSTM and then by SAC-SMA.

3.3.2 | KGE skill score

The unconstrained LSTM was used as a baseline model to measure

information loss in the MC-LSTM and SAC-SMA. Results of the KGE

skill score (KGEss) analysis are shown in Figure 7. The left subplot of

this figure shows a clear ordering of model performance that agrees

with what we hypothesized in Equation (6)—generally, model perfor-

mance degrades as more constraints are added. The left subplot also

shows that DL models perform better when trained and forced with

Daymet data than with NLDAS data. This is somewhat counter-

intuitive given the large, nonstationary bias that we saw in the previ-

ous section (Figure 2). SAC-SMA, however, performed significantly

worse with the biased data. While the DL models (even those con-

strained to conserve mass) were able to learn to accommodate the

spatially heterogeneous biases in the input data, the PB model was

not, even when trained on the biased data in each individual catch-

ment. Daymet is the more informative precipitation product overall

and a flexible DL model is able to learn and extract this information

while the PB model cannot (even though the PB model is locally cali-

brated), however it is not the mass balance constraints that cause the

problem.

The right subplot of Figure 7 plots the CDF of the skill scores

(Equation 8) of the MC-LSTM and SAC-SMA relative to the uncon-

strained LSTM. The grey dotted vertical line represents a skill score of

zero, indicating that the test model (MC-LSTM, SAC-SMA) performs

equally well as the baseline (LSTM). The main takeaway from this fig-

ure is that adding mass balance constraints (both in the MC-LSTM

and in SAC-SMA) helps more when using the NLDAS data, even

though it was the Daymet data that showed biases.

Figure 8 plots the CDF of the difference between the MC-LSTM

and the LSTM. In each basin, this difference represents an upper

bound on the error introduced by mass balance constraints, relative to

the LSTM. There are other possible reasons why the MC-LSTM might

not perform as well as the LSTM (e.g., the way that it handles unob-

served sources and sinks), however this difference (which is some-

times negative) is a conservative estimate of the error due to mass

conservation in DL rainfall runoff models.

4 | CONCLUSIONS

The hypothesis tested in this paper is that errors in input/output (pre-

cipitation/streamflow) data cause apparent violations of closure that

may largely explain the poor performance of conceptual models rela-

tive to deep learning. Given that the physical principle of mass balance

F IGURE 5 Regional mass balance errors from LSTM, MC-LSTM and SAC-SMA with NLDAS forcings. The main body of each box shows the
median and confidence intervals. The vertical lines extending to the most extreme, non-outlier data points. Souris-Red-Rainy region (Hydrologic
Unit Code 09) is absent due to a lack of sufficient basins
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over a control volume is one of the most fundamental components of

hydrological theory, and is the first assumption we take for granted

when developing theory-based hydrological models, it is arguably the

first physical ‘law’ that we might test when developing physics-

informed ML strategies for hydrology.

The long-term mass balance analysis (Section 3.2) shows that

SAC-SMA includes a strong positive mass bias in the Eastern

U.S. with Daymet forcings. This indicates that, in regards to the dis-

crepancy between NLDAS and Daymet long-term precipitation mag-

nitudes, Daymet is likely positively biased, rather than NLDAS being

negatively biased (i.e., Daymet overestimates precipitation magni-

tudes, rather than NLDAS underestimating). This propagates through

the SAC-SMA predictions, and reduces the performance in terms of

efficiency metrics, but not the Pearson-r nor the peak timing error.

F IGURE 6 Left: Cumulative
distribution of the mutual information for
LSTM, MC-LSTM and SAC-SMA with
Daymet forcing. Right: Cumulative
distribution of the mutual information for
LSTM, MC-LSTM and SAC-SMA with
NLDAS forcing

F IGURE 7 Left: Cumulative distribution of the Kling-Gupta Efficiency (KGE) for three models on two different forcing products. This subplot
shows (i) that in general Daymet is more informative than NLDAS, and (ii) that the ordering of the inequality in Equation (6) is generally correct.
Right: KGE skill scores (Equation 8) of SAC-SMA and MC-LSTM with respect to the unconstrained LSTM [positive values to the right of the
dotted grey line mean that the MC-LSTM (SAC-SMA) performs better than the LSTM, and negative values to the left of the grey line mean that
the MC-LSTM (SAC-SMA) performs worse than the LSTM]. This subplot shows that adding mass balance constraints to the LSTM has more
benefit when using NLDAS inputs than when using Daymet inputs
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For Beven's closure-violation hypothesis to be true as an explana-

tion for the general failure of traditional hydrology models, the errors

in rainfall or discharge data must necessarily be systematic in a way

that can be learned by a neural network, but not by a calibrated con-

ceptual model. Our results indicate that this is indeed the case: the

DL-based LSTM network was able to learn the non-uniform patterns

of biases in input–output data, and thereby extract useful information

from different (imperfect) precipitation products in spatially and tem-

porally heterogeneous ways. This was true even when using heavily

biased rainfall products that contribute significant so-called ‘disinfor-
mation’ when calibrating a conceptual model; for example, Daymet

seems to actually contain more information about streamflow than

the less biased NLDAS precipitation product. It is important to note

that these data biases are not simple additive shifts in the mean –

instead they are complex and heterogeneous throughout our large-

sample dataset, and the DL models are able largely to learn this

heterogeneity.

While Beven (2020) was correct that the imposition of conserva-

tion laws is generally harmful for hydrologic prediction, this fact does

not help to explain most of the significantly better skill provided by

DL over traditional (theory-based) rainfall-runoff models. These find-

ings demonstrate two things:

1. that conservation laws may not be a good foundation for scale-

relevant hydrological theory,

2. data that are supposedly ‘disinformative’ when used in the context

of calibrating poorly conceived models might actually contain sig-

nificant amounts of useful information that is accessible when

used in the context of better conceived models.

In other words, for catchment-scale rainfall-runoff prediction it is

arguably the current hydrological theory that is (more) disinformative,

not the hydrological data. In summary, model performance degrades

as constraints are added, which causes loss of information between

the inputs (atmospheric forcings) and the target (streamflow), as

shown in 2.3.3.

5 | DISCUSSION

There is some subtlety to this conclusion due to the fact that the MC-

LSTM includes a flux term that accounts for unobserved sinks

(e.g., evapotranspiration, sublimation, aquifer recharge). Like all mass

balance models, however, the MC-LSTM explicitly accounts for all

water in and across the boundaries of the system. Even with this

strong constraint, the MC-LSTM performs significantly better than

the mass-conserving benchmark conceptual model. This result indi-

cates that classical hydrology model structures (conceptual architec-

tures and flux equations) actually cause prediction errors that are

larger than can be explained as being due to errors in the forcing and

observation data.

Our ability to properly conduct a more rigorous and detailed anal-

ysis of long-term water balances is limited by the fact that accurate

evapotranspiration and percolation data (etc.) are not readily available

at watershed scales. Nonetheless, what our analysis based on examin-

ing cumulative discharge shows is that an LSTM architecture not con-

strained to conserve mass is able to extract information from the

available data that enables it to learn ‘effective’ water balances that

are similar to those learned by a similar model architecture (MC-

LSTM) that is explicitly constrained to enforce such closure, and that

this effective water balance is in general better than that achieved by

traditional conceptual and PB model architectures. Results from Lees

et al. (2022) suggest that LSTM learns to reproduce stores of water,

such as soil moisture and snow cover.

A likely reason for this is that that the current body of hydrologi-

cal theory does not aggregate well to the scale of unorganized com-

plex watershed systems (Nearing, Kratzert, et al., 2020). While it is

true that hydrological theory can enable a modeller to ‘interpret’ a

watershed response (assuming a proper accounting for uncertainty),

such theory does not currently translate into accurate predictions of

catchment-scale behaviours using available data. Meanwhile, the most

accurate way to generate a predictive model is to impose as few

‘physical constraints’ as possible on its ability to extract information

from the available data, and consequently any model that is con-

strained to obey some ‘deeper’ physical understanding of the system

must be less accurate in a predictive sense, unless that physical under-

standing actually contributes predictively-useful information that can-

not be otherwise extracted directly from the data.

Looking forward, a particular application of rainfall-runoff model-

ling that necessarily requires the imposition of strict mass-balance

constraints is ‘Earth-system-scale’ modelling. In this context, any

model that seeks to explain components of long-term climate variabil-

ity (for instance) cannot allow for any significant amount of residual

mass to go unexplained. To use a dramatic example, unaccounted for

losses at the catchment-scale could potentially result in the removal

of all water mass from the global water cycle, which would render a

F IGURE 8 Cumulative density function of an estimated upper
bound on the error introduced into deep learning streamflow
predictions by adding a mass balance constraint
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long-term simulation useless. Global-scale modelling of land-surface

dynamics could be a potentially powerful application of the MC-LSTM

network approach, and could be implemented by training additional

model targets of mass-loss representations of ‘losses’ (transfers) to

the sub-surface and ‘losses’ (transfers) to the atmosphere.
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APPENDIX A: : COMPARISON WITH THE U.S. NATIONAL

WATER MODEL

The NOAA National Water Model (NWM) retrospective run version

2 is used as an additional benchmark because of its wide scale use

and availability. We can only use the NWM to compare with NLDAS

data, as it has not been run with Daymet. The NWM is based on

WRF-Hydro (Salas et al., 2018), which is a model that includes Noah-

MP (Niu et al., 2011) as a land surface component, kinematic wave

overland flow, and Muskingum-Cunge channel routing. NWM was

previously used as a benchmark for LSTM simulations in CAMELS by

Kratzert, Klotz, Herrnegger, et al. (2019), Gauch, Kratzert, et al. (2021)

and Frame et al. (2021). Public data from NWM is hourly and

CONUS-wide—we pulled hourly flow estimates from the USGS

gauges in the CAMELS data set and averaged these hourly data to

daily over the time period 1 October 1980 through 30 September

2008. As a point of comparison, Gauch, Kratzert, et al. (2021) com-

pared hourly and daily LSTM predictions against the NWM and found

that the NWM was significantly more accurate at the daily timescale

than at the hourly timescale, whereas the LSTM did not lose accuracy

at the hourly timescale versus the daily timescale. All experiments in

the present study were done at the daily timescale.

The NWM is also susceptible to the kinds of mass bias error prop-

agation from the forcings. We cannot, however, test the same

hypothesis with the NWM because we do not have the capability to

re-calibrate and run the NWM with Daymet forcing, as the complete

set of data to run the NWM are not publicly available. The National

Oceanic and Atmospheric Association (NOAA) has made publicly

available a NWM retrospective run using NLDAS forcing data. This

allows us to directly compare the mass balance errors with the LSTM,

MC-LSTM and SAC-SMA. The NWM retrospective run (NWM) does

not completely overlap with our test period (1989–1999). We per-

formed the same experiment on a test period that can be compared

with the NWM, which includes training/calibrated the LSTM, MC-

LSTM and SAC-SMA. The train/test period split used a test period

that aligns with the availability of benchmark data from the US

National Water Model. The train period included water years 1981–

1995, and the test period included water years 1996–2014 (i.e., from

1 October 1995 through 30 September 2014). This was the same

training period used by Newman et al. (2017) and Kratzert, Klotz,

Herrnegger, et al. (2019), but with an extended test period. This train/

test split was used because the NWM data record is not long enough

to accommodate the train/test split used by previous studies (item

above in this list).

The NWM was calibrated by NOAA personnel on about 1400

basins with NLDAS forcing data and includes a regionalization strat-

egy that attempts to use the calibrated parameters across basins not

included in the calibration set, however most of the CAMELS basins

are included in that calibration set. The NWM calibration time period

is on water years 2009–2013. Because of the inconsistencies in the

time period and basins included in the calibration, we cannot directly

compare the NWM to the other models. But we include the NWM

here as Appendix because it is relevant to the hydrologic community,

even if not directly comparable, because of the ongoing development

and growing user-base of the NWM (Table A1).

The time period split used in this Appendix has a similar discrep-

ancy between the total precipitation for NLDAS and Daymet, shown

in Figure A1, which is a positive Daymet bias or a negative NLDAS

bias in basins with large precipitation totals from about �100 to �70

degrees longitude.

Figure A2 shows the cumulative density functions (CDFs) of long-

term mass biases from the 484 CAMELS basins from the models dur-

ing the 1996–2014 test period. Note that we excluded basins that did

not have a complete observation time series throughout the entire

test period. The LSTM and MC-LSTM both predicted streamflows

that result in more accurate long-term cumulative discharge than the

calibrated SAC-SMA model and the NWM. The LSTM and the MC-

LSTM performed roughly similarly on both NLDAS and Daymet on

absolute mass bias, but LSTM does slightly better on negative mass

bias. The MC-LSTM does slightly better on positive mass bias with

NLDAS forcings, but are roughly similar with Daymet forcings.

Figure A3 shows the Mass balance results from for the three

models with both Daymet and NLDAS forcings. The result of the

SAC-SMA simulation with Daymet forcings shows a clear positive

mass bias error in the eastern half of CONUS. The result of the simu-

lation with NLDAS forcings shows a mix of positive and negative mass

bias throughout CONUS.

Figure A4 shows the mass bias errors for the model runs with

NLDAS forcings in box and whisker plots for the U.S. Water

Resources Regions. A mass bias error is clearly shows for SAC-SMA in

the Easter CONUS regions, while the LSTM and MC-LSTM do not

express this pattern. There is generally a correlation between the

three models, where the regions with high mass bias error are

expressed by all three models. For instance, the Upper Colorado

region shows low mass bias error for all three models, and the Lower

Colorado shows a relatively high mass bias error by all three models.

Figure A5 shows the mass bias errors for the model runs with

Daymet forcings in box and whisker plots for the U.S. Water

Resources Regions. The NWM has high outliers in the Central

CONUS regions. There is a correlation of mass bias error across all

four models, where when the conceptual models (SAC-SMA and

NWM), the physics informed ML Model (MC-LSTM) and the pure data

driven model (LSTM) all show relatively small to moderate mass bass

bias error in the Northeastern CONUS, high mass bias error in the

central CONUS and moderate mass bias in west coast regions. The

exception to this trend is that the Great Basin has a low mass bias

error from LSTM, MC-LSTM and SAC-SMA, but a high mass bias error

from NWM.

Results of the KGE skill score (KGEss) analysis are shown in

Figure A6. The left subplot of this figure shows a clear ordering of

model performance that agrees with what we hypothesized in

Equation (6)—generally, model performance degrades as more con-

straints are added. The left subplot also shows that DL models per-

form better when trained and forced with Daymet data than with

NLDAS data. The right subplot of Figure A7 plots the CDF of the skill
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scores (Equation 8) of the MC-LSTM and SAC-SMA relative to the

unconstrained LSTM. The grey dotted vertical line represents a skill

score of zero, indicating that the test models (NWM, MC-LSTM, SAC-

SMA) performs equally well as the baseline (LSTM). NWM-Rv2 does

worse than SAC-SMA on the low end of the distibutions, but slightly

better on the high ends.

Mutual information of the models are shown in Figure A7. NWM

shows more information loss than SAC-SMA in the worst performing

basins, but less in the better performing basins. This could be because

the NWM has more constraints in the form of a multi-layered model-

ling chain. The NWM starts with a land surface model, which causes

runoff across a terrain routing model, which is also two-way coupled

with the land model, and finally the terrain model feeds into the chan-

nel routing model, which provides an estimate of streamflow. There

are multiple steps along that modelling chain that cause different

amounts of information loss.

TABLE A1 Median performance metrics (plus or minus the 95% confidence interval) across 484 basins calculated on the test period 1996–
2014 with two separate forcing products

Metric

Daymet forcing NLDAS forcing

LSTM MC-LSTM SAC-SMA LSTM MC-LSTM SAC-SMA NWM*

NSE 0.74 ± �0.02 0.74 ± �0.02 0.59 ± �0.08 0.71 ± �0.05 0.72 ± �0.02 0.63 ± �0.05 0.63 ± �0.05

KGE 0.78 ± �0.02 0.77 ± �0.02 0.56 ± n/a 0.77 ± �0.02 0.74 ± �0.02 0.68 ± �0.02 0.67 ± �0.05

Pearson-r 0.88 ± �0.01 0.88 ± �0.01 0.81 ± n/a 0.86 ± �0.01 0.86 ± �0.01 0.81 ± �0.01 0.82 ± �0.01

Alpha-NSE 0.96 ± �0.02 0.91 ± �0.01 0.88 ± �0.02 0.94 ± �0.02 0.87 ± �0.02 0.83 ± �0.02 0.85 ± �0.03

Beta-NSE 0.03 ± �0.01 0.03 ± �0.01 0.13 ± �0.02 0.01 ± �0.01 �.01 ± �0.01 �0.01 ± n/a �0.01 ± n/a

Peak-timing 0.34 ± �0.03 0.33 ± �0.03 0.45 ± �0.06 0.38 ± �0.03 0.4 ± �0.03 0.53 ± �0.06 0.54 ± �0.05

F IGURE A1 Comparison of the total
precipitation from NLDAS and Daymet for
each of the CAMELS basins, colour-coded
by the longitudinal coordinate of the
stream gauge
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F IGURE A2 Distribution of mass balance error across the 484 basins. Top: Cumulative distribution curves of the absolute mass error for
models forced with NLDAS (left) and Daymet (right). Bottom: Cumulative distributions of mass error from models forced with NLDAS (left) and
Daymet (right)
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F IGURE A3 Geospatial distribution
of long-term positive or negative mass
bias error. The left and right columns
show the results with NLDAS and Daymet
meteorological forcing data, respectively.
The four rows are associated (from top to
bottom) with LSTM, MC-LSTM, SAC-SMA
and NWM. The asterisk (*) on the bottom
left sub-plot label indicates that the NWM

was not calibrated on the same time
period as the LSTM, MC-LSTM and SAC-
SMA models
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F IGURE A4 Regional mass balance errors from LSTM, MC-LSTM and SAC-SMA with Daymet forcings. Souris-Red-Rainy region (Hydro-logic
Unit Code 09) is absent due to a lack of sufficient basins

F IGURE A5 Regional mass balance errors from LSTM, MC-LSTM and SAC-SMA with NLDAS forcings. Souris-Red-Rainy region (Hydro-logic
Unit Code 09) is absent due to a lack of sufficient basins. The asterisk (*) on the NWM label indicates that the model was calibrated on a separate
time period than the other three models, and is thus not directly comparable
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F IGURE A6 Left: Cumulative
distribution of the mutual information for
LSTM, MC-LSTM and SAC-SMA with
Daymet forcing. Right: Cumulative
distribution of the mutual information for
LSTM, MC-LSTM, SAC-SMA and NWM
with NLDAS forcing

F IGURE A7 Left: Cumulative distribution of the Kling-Gupta Efficiency (KGE) for four models on two different forcing products. Right: KGE
skill score with respect to the unconstrained LSTM
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