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ABSTRACT: We build three long short-term memory (LSTM) daily streamflow prediction models (deep learning
networks) for 531 basins across the contiguous United States (CONUS), and compare their performance: (1) a
LSTM post-processor trained on the United States National Water Model (NWM) outputs (LSTM_PP), (2) a
LSTM post-processor trained on the NWM outputs and atmospheric forcings (LSTM_PPA), and (3) a LSTM
model trained only on atmospheric forcing (LSTM_A). We trained the LSTMs for the period 2004–2014 and eval-
uated on 1994–2002, and compared several performance metrics to the NWM reanalysis. Overall performance of
the three LSTMs is similar, with median NSE scores of 0.73 (LSTM_PP), 0.75 (LSTM_PPA), and 0.74
(LSTM_A), and all three LSTMs outperform the NWM validation scores of 0.62. Additionally, LSTM_A outper-
forms LSTM_PP and LSTM_PPA in ungauged basins. While LSTM as a post-processor improves NWM predic-
tions substantially, we achieved comparable performance with the LSTM trained without the NWM outputs
(LSTM_A). Finally, we performed a sensitivity analysis to diagnose the land surface component of the NWM as
the source of mass bias error and the channel router as a source of simulation timing error. This indicates that
the NWM channel routing scheme should be considered a priority for NWM improvement.

(KEYWORDS: National Water Model; theory-guided machine learning; long short-term memory; streamflow;
model diagnostics.)

INTRODUCTION

The United States (U.S.) National Water Model
(NWM), based on WRF-Hydro (Cosgrove et al. 2015),
is an emerging large-scale hydrology simulator. Some
specific details of the NWM advancements in large-
scale hydrology are described by Elmer (2019, p. 11),
including increased resolution and number of stream
reaches (2.7 million) for a model covering the contigu-
ous United States (CONUS). A purported strength of

WRF-Hydro is simulating hydrologic dynamics, and
specifically the timing of hydrologic response (Salas
et al. 2018). The predictive performance of the NWM
(ability to match streamflow observations) has been
shown to vary widely. Hansen et al. (2019) evaluated
the performance of the NWM in the Colorado River
Basin in terms of drought and low flows; they found
better performance in the Upper Colorado River
Basin than in the Lower Colorado River Basin, and
attributed this discrepancy to the NWM’s ability to
simulate snowpack. WRF-Hydro has generally poor
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performance in the Southwest and Northern Plains
(Salas et al. 2018). Salas et al. (2018) hypothesized
that error in WRF-hydro might come from lakes,
reservoirs, floodplain dynamics, and soil parameter
calibration.

NOAA personnel calibrated the NWM (version 2.0)
at 1,457 gauged basins within the CONUS domain.
As a point of comparison, the U.S. Geological Survey
(USGS) records daily streamflow at 28,529 basins
(https://nwis.waterdata.usgs.gov/nwis, accessed June
2020). Calibrating the model at each stream gauge
within the NWM domain (which include all of
CONUS and many U.S. territories) is a large compu-
tational expense, and while regionalization strategies
can be used to improve real-time forecast accuracy
without having to calibrate each individual basin,
accuracy typically suffers compared to direct calibra-
tion. Due to these reasons and others, making accu-
rate hydrologic predictions over large scales is a
challenging problem, however, there are promising
results in the machine learning (ML) and data
science communities that may be directly applicable
to improving the NWM.

ML is a powerful tool for hydrologic modeling, and
there has been a call to merge ML with traditional
hydrologic modeling (Reichstein et al. 2019; Nearing
et al. 2020). One example of an ML approach that
has been effective for hydrologic prediction is the
“long short-term memory” network (LSTM) (Hochre-
iter 1991; Hochreiter and Schmidhuber 1997). The
LSTM is a time-series deep learning method that is
particularly well suited to model hydrologic processes
because it mimics in certain ways the Markovian
input-state-ouput structure of a dynamical system
(Kratzert et al. 2018). LSTMs have been effective at
simulating predictions of surface runoff at the daily
time scale (Kratzert, Klotz, Herrnegger, et al. 2019),
including in ungauged catchments where traditional
methods of calibration do not work (Kratzert, Klotz,
Shalev, et al. 2019), and also at sub-daily (hourly)
time scales (Gauch, Kratzert, et al. 2021). One poten-
tial problem with ML, however, is that it lacks a
physical basis. While there are emerging efforts in
hydrology to merge physical understanding with ML
(Karpatne, Watkins, et al. 2017; Pelissier and Frame
2019; Read et al. 2019; Chadalawada and Herath
2020; Daw et al. 2020; Nearing et al. 2020; Tar-
takovsky et al. 2020; Hoedt et al. 2021), the field of
theory-guided ML (Karpatne, Atluri, et al. 2017) is
still relatively immature in hydrology.

The NWM informs forecasts of many hydrologic con-
ditions, including river ice, snowpack, soil moisture,
and inundation, which are used for management appli-
cations such as transportation, recreation, agriculture,
and fisheries (NOAA 2019). When ML is to be used in
the NWM it should not disrupt the delivery of these

hydrologic forecasts, therefore an ML prediction for
streamflow that does not also include predictions of the
other hydrologic states and variables must be run in
parallel with the existing process-based hydrologic
model. A natural question arises: does the existing
NWM formulation benefit the already highly accurate
LSTM predictions of streamflow?

Hydrologic post-processing can remove systematic
errors in the model prediction, and has been shown
to improve real-time forecast accuracy of both cali-
brated and uncalibrated basins, particularly in wet
basins (Ye et al. 2014). The general methodology of
post-processing involves taking the output of a
process-based model and feeding it into a data-driven
model. In this paper, we applied a LSTM-based post-
processor for NWM basin-scale streamflow predic-
tions. This is a straightforward theory-guided ML
approach. We tested a LSTM-based post-processor
that uses the dynamic NWM model outputs (shown
in Table 1 and described below in the methods sec-
tion) and compared the results against the NWM
itself. We also tested a post-processor that included
both the NWM outputs and atmospheric forcings as
inputs and compared against an LSTM model trained
only with atmospheric forcings (no NWM outputs).

We applied the LSTM post-processors to 531 basins
across the CONUS. The basins chosen for this large-
scale analysis are mostly headwater catchments with-
out engineered control structures, such as dams,
canals, and levees. This was a deliberate choice made
for the purpose of simulating a close-to-natural rain-
fall–runoff response. Our goal was to use the post-
processor to learn systematic corrections to simulated
basin-scale rainfall–runoff processes that can improve
forecasts of streamflow, rather than the hydraulic
engineering implications resulting from simulated
controlled flow, for example a reservoir release. Kim
et al. (2020) showed the limitation of the NWM to
predict streamflow in a highly engineered watershed
and the need for representing controlled releases.
Thus, we are using some of the simplest, and top per-
forming, applications of the NWM for these experi-
ments.

METHODS

Data and Models

CAMELS Catchments. This study used the
Catchment Attributes and Meteorological dataset for
Large Sample Studies (CAMELS) (Newman et al.
2015; Addor et al. 2017). The U.S. National Center
for Atmospheric Research curated these data (NCAR;
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https://ral.ucar.edu/solutions/products/camels, accessed
March 2020), and we used the 531 (out of 671) basins
that Newman et al. (2015) chose for model bench-
marking. Newman et al. (2015) excluded basins with
large discrepancies in different methods for measur-
ing basin area and also basins larger than 2,000 km2.
CAMELS data include corresponding daily stream-
flow records from USGS gauges, and meteorological
forcing data (precipitation, max/min temperature,
vapor pressure, and total solar radiation) come from
North American Land Data Assimilation System
(NLDAS; Xia et al. 2012).

National Water Model. We used the NWM ver-
sion 2.0 reanalysis, which contains output from a 25-
year (January 1993 through December 2019) retro-
spective simulation (https://docs.opendata.aws/nwm-
archive/readme.html, accessed June 2020). The NWM
retrospective ingests rainfall and other meteorological
forcings from atmospheric reanalyses (https://water.
noaa.gov/about/nwm, accessed June 2020). NWM
reanalysis output includes channel outputs (point
fluxes: CHRT) and land surface (gridded states and
fluxes: LDAS and RT) outputs. The specific features
that we used from the NWM reanalysis are shown in
Table 1. To be compatible with the LSTM model,
which uses a one-day timestep and was trained using
all basins simultaneously, we took the mean values of
these model outputs across UTC calendar days (mid-
night–2300) to produce daily records from the hourly
NWM when used as input to the LSTM, but for
NWM streamflow diagnostics we used the local calen-
dar day (based on U.S. time zone) to be compatible

with the USGS gauge records. We collected channel
routing point data (CHRT) at each individual, NWM
stream reach that corresponds to the stream gauge
associated with each CAMELS catchment. We col-
lected the gridded land surface data (LDAS) from
each 1 km2 Noah-MP cell (Niu et al. 2011) contained
within the boundaries of each CAMELS catchment,
and then calculated the averaged to produce a single
representative (lumped) value for each catchment.
We collected Gridded routing data (RT) from each
250 m2 cell, and we included the mean and maximum
value within the catchment boundary. We did not
include lake input and output fluxes because these
would be inconsistent across basins (some basins
have zero and some basins have multiple lakes). Note
that the units of the NWM outputs are not required
for the LSTM post-processor.

LSTM Network. The LSTM is a recurrent neural
network that is able to maintain a memory of the sys-
tem state and dynamics through a period of time (in
this case 365 days). This recurrent state space is the
main advantage for hydrologic applications over other
types of neural networks. We developed our LSTM
network from Kratzert et al. (2018), Kratzert, Klotz,
Herrnegger, et al. (2019), and Kratzert, Klotz, Shalev,
et al. (2019) using a codebase that is now referred to
as NeuralHydrology (https://neuralhydrology.github.
io/ accessed March 2021). NeuralHydrology was writ-
ten in the Python programming language and is
based primarily on the Pytorch ML library.

The LSTM in previous studies used two types of
inputs: daily meteorological forcings and static

TABLE 1. National Water Model (NWM) output data.

Feature name Feature
NWM model
component Resolution

ACCET Accumulated evapotranspiration LDAS 1 km
FIRA Total net long-wave (LW) radiation to atmosphere LDAS 1 km
FSA Total absorbed short-wave (SW) radiation LDAS 1 km
FSNO Snow cover fraction on the ground LDAS 1 km
HFX Total sensible heat to the atmosphere LDAS 1 km
LH Latent heat to the atmosphere LDAS 1 km
SNEQV Snow water equivalent LDAS 1 km
SNOWH Snow depth LDAS 1 km
SOIL M (4 layers) Volumetric soil moisture LDAS 1 km
SOIL W (4 layers) Liquid volumetric soil moisture LDAS 1 km
TRAD Surface radiative temperature LDAS 1 km
UGDRNOFF Accumulated underground runoff LDAS 1 km
streamflow River Flow CHRT Point
q_lateral Runoff into channel reach CHRT Point
velocity River Velocity CHRT Point
qSfcLatRunoff Runoff from terrain routing CHRT Point
qBucket Flux from groundwater bucket CHRT Point
qBtmVertRunoff Runoff from bottom of soil to groundwater bucket CHRT Point
Sfcheadsubrt (mean and max) Ponded water depth RTOUT 250 km
Zwattablrt (mean and max) Water table depth RTOUT 250 km
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catchment attributes. Again, note that the units of
the forcing data are irrelevant when used as inputs
for the LSTM, which does not include a mass or
energy balance. We normalized all inputs to the
LSTM, including static and dynamic inputs by sub-
tracting the mean and dividing by the standard devi-
ation of the training data. We used 18 catchment
attributes from the CAMELS dataset related to cli-
mate, vegetation, topography, geology, and soils.
These are described in more detail by Addor et al.
(2017) and listed here in Table 2. Catchment attri-
butes are static for each basin (do not change in
time). LSTMs are trained to make predictions that
are appropriate for individual basins according to
their static attributes (Kratzert, Klotz, Shalev, et al.
2019), allowing us to train a single model that can be
applied on any basin (we tested them on 531
CAMELS basins). The static attributes position a par-
ticular basin within an input space that is suitable
for a particular hydrologic response (Nearing et al.
2021). For instance, the geologic permeability may
influence the mass difference between total rainfall
and runoff in a particular basin, as it would as a
parameter in a process-based model. For the post-
processing runs, we added the NWM model output
predictions from version 2.0 of the NWM shown in
Table 1.

We trained the LSTM models to make predictions
at all 531 CAMELS catchments used in the analysis.
We split the data temporally into a training period
and testing period, and we present no results from
the training period as these results are unrepresenta-
tive of the out-of-sample predictions. We trained the
LSTMs on water years 2004 through 2014 and tested
on water years 1994 through 2002. We included no
spatial splits in the training procedure. The LSTMs
used a 365-day LSTM look-back period, so a full year
gap was left between training and testing to prevent
bleedover (i.e., information exchange) between the
two periods. We trained separate LSTMs with 10
unique random seeds for initializing weights and
biases, and calculated benchmarking statistics using
the ensemble mean hydrograph. The LSTMs make
predictions representing runoff in units [mm], reflect-
ing an area normalized volume of water that moves
through a stream at each model time step. USGS
gauge records (and the NWM predictions) are in
streamflow units [L3/T]. We used the geospatial fabric
estimate of the catchment area provided in the
CAMELS dataset to convert all streamflow to units
[L] for our diagnostic comparison. We trained the
LSTMs with the protocol and features described in
appendix B of Kratzert, Klotz, Shalev, et al. (2019):
this includes 30 epochs, a hyperbolic tangent activa-
tion function, a hidden layer size of 256 cell states, a
look-back of 365 days, variable learning rates set at

TABLE 2. North American Land Data Assimilation System forc-
ings and static catchment attributes.

Meteorological forcing data (used only in models denoted
with an “A”)

Maximum air temp (TMax) 2-m daily maximum air temperature
Minimum air temp (TMin) 2-mr daily minimum air temperature
Precipitation (PRCP) Average daily precipitation
Radiation (SRAD) Surface-incident solar radiation
Vapor pressure (Vp) Near-surface daily average

Static catchment attributes (used in each of the LSTM
models)

Precipitation mean Mean daily precipitation
PET mean Mean daily potential

evapotranspiration
Aridity index Ratio of mean PET to mean

precipitation
Precipitation seasonality Estimated by representing annual

precipitation and temperature as
sin waves positive (negative) values
indicate precipitation peaks during
the summer (winter). Values of
approx. 0 indicate uniform
precipitation throughout the year

Snow fraction Fraction of precipitation falling on
days with temp [C]

High precipitation
frequency

Frequency of days with ≤ 59 mean
daily precipitation. Average
duration of high precipitation
events (number of consecutive days
with ≤59 mean daily precipitation)

Low precipitation frequency Frequency of dry days (<1 mm/day)
Low precipitation duration Average duration of dry periods

(number of consecutive days with
precipitation <1 mm/day)

Elevation Catchment mean elevation
Slope Catchment mean slope
Area Catchment area
Forest fraction Fraction of catchment covered by

forest
LAI max Maximum monthly mean of leaf area

index
LAI difference Difference between the max. and

min. mean of the leaf area index
GVF max Maximum monthly mean of green

vegetation fraction
GVF difference Difference between the maximum

and minimum monthly mean of the
green vegetation fraction

Soil depth (pelletier) Depth to bedrock (maximum 50 m)
Soil depth (STATSGO) Soil depth (maximum 1.5 m)
Soil porosity Volumetric porosity
Soil conductivity Saturated hydraulic conductivity
Max water content Maximum water content of the soil
Sand fraction Fraction of sand in the soil
Silt fraction Fraction of silt in the soil
Clay fraction Fraction of clay in the soil
Carbonate rocks fraction Fraction of the catchment area

characterized as “carbonate
sedimentary rocks”

Geological permeability Surface permeability (log10)

Note: LSTM, long short-term memory.
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epoch 0 to 0.001, epoch 11 to 0.005 and epoch 21 to
0.0001, dropout rate of 0.4 and an input sequence
length: 270.

Overfitting of deep learning models can lead to
poor performance when the models make predictions
on data that is not part of the training set. The meth-
ods described above to ensure that information in the
testing set (water years 1994 through 2002) is not
part of the training set helps build confidence in our
modeling results. In addition, the dropout rate is an
important hyper-parameter for preventing overfitting.
The dropout probabilistically removed some connec-
tions from the LSTM network during training, in our
case with a probability of 0.4. This avoids the net-
work relying too heavily on specific connections.
Model runs during testing did not include dropout.

Experimental Design

We tested the results from LSTM post-processing
against the NWM and also against a LSTM trained
with atmospheric forcings as dynamic inputs to the
model, with no inputs from the NWM model outputs
(referred to as LSTM_A, in which the A stands for
atmospheric forcing). Table 3 will guide the reader
through the setup of each model.

Simple schematics of the LSTMs used in this study
are shown in Figure 1. The LSTM post-processors
(LSTM_PP and LSTM_PPA) used NWM outputs as
LSTM inputs, and the process-based NWM predic-
tions influenced the LSTM-based streamflow predic-
tions. This is a straightforward method of theory-
guided (or physics-informed) ML, but is commonly
referred to as post-processing (Han 2021).

As a quality check, we compared the results from
each LSTM ensemble member, and found a relative
standard error of the mean streamflow about 1%, and
relative standard error of the Nash–Sutcliffe effi-
ciency (NSE) value of about 0.01%. This means that
all LSTM solutions are similar between random ini-
tialization seeds. Gauch, Mai, et al. (2021) attributed a 0.01 discrepancy in NSE values of the LSTM pre-

dictions to nondeterminism of the loss function mini-
mization. In our experiments discrepancies in the
loss function occur between different random seed
initializations, but running the training procedure
twice with the same random seed gives an identical
solution, satisfying the definition of determinism.

Model comparisons. We tested/evaluated all models
(NWM and all LSTMs) on the same daily data and
the same time period (years 1994–2002). We trained
the LSTMs on data from years 2004–2014 and evalu-
ated them on years 1994–2002. The NWM was cali-
brated by NOAA on the time period 2007–2013
(https://ral.ucar.edu/sites/default/files/public/9_Rafieei
Nasab_CalibOverview_CUAHSI_Fall019_0.pdf, accessed

TABLE 3. Models.

Model
label

Number of
dynamic LSTM

inputs Model description

NWM N/A NWM mean daily streamflow
predictions

LSTM_PP 28 LSTM trained with NWM
output for post-processing

LSTM_PPA 33 LSTM trained with NWM
output and atmospheric
forcings for post-processing

LSTM_A 5 LSTM trained with atmospheric
forcing conditions

FIGURE 1. Flowchart showing the LSTM_A and the LSTM post-
processors with NWM data as inputs (LSTM_PP and LSTM_PPA).
LSTM_PP is the post-processor which used only NWM outputs as
input to an LSTM, and LSTM_PPA used both the NWM outputs
and atmospheric forcings.
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August 2021), though no journal publications thor-
oughly describe the details of this calibration. For
this study, we tested the performance of the NWM
reanalysis only on the time period 1994–2002 (the
same time period as the LSTM).

Performance Metrics. We calculated several
metrics to evaluate predictive performance, including
the NSE and Kling–Gupta efficiency (KGE) values
(Gupta et al. 2009). We calculated the variance, bias,
and Pearson correlation metrics separately as compo-
nents of the NSE (Gupta et al. 2009); these tell us
about relative variability, mass conservation, and lin-
ear correlation between the modeled/observed stream-
flow values, respectively. Observed streamflow values
are from the USGS streamflow gauges associated
with each of the CAMELS basins. We calculated the
metrics in two ways: (1) at each basin and then aver-
aged together, and (2) using all of the flows from all
basins combined.

Our graphical results focus on three performance
metrics: (1) NSE measures the overall predictive per-
formance as a correlation coefficient for the 1:1 linear
fit between simulations and observations, (2) Peak
timing error measures the absolute value of differ-
ences (in units days) between simulated and observed
peak flows for a given event, and (3) total (absolute)
bias measures the overall bias of the simulated
hydrograph relative to observations and represents
how well the model matches the total volume of parti-
tioned rainfall that passes through the stream gauge
at each basin.

We also calculated performance metrics on differ-
ent flow regimes. Rising limbs and falling limbs were
characterized by a one-day derivative, where positive
derivatives were categorized as rising limb, and nega-
tive derivatives as falling limb. High flows were char-
acterized as all flow above the 80th percentile in a
given basin, and low flows as below the 20th per-
centile in a given basin.

We tested the performance of the LSTM post-
processors in different regions. We split the basins by
USGS designated “water resource regions” (https://
water.usgs.gov/GIS/regions.html, accessed July 2020).
To analyze the regions individually we averaged the
NSE, bias, and timing error of the CAMELS basins
within each region.

We set an alpha value for statistical significance to
a = 0.05. To control for multiple comparisons we
adjusted the alpha values using family-wise error
rate equal to 1 � (1 � a)m, with m being the number
of significance tests (86 in total), which brought our
effective alpha value down to 0.049. We tested for
statistical significance with a Wilcoxon signed-rank
test against the null hypothesis that our test models
(LSTM post-processors) performance across basins

came from the same distribution as our base models
(NWM and LSTM_A).

Simulated Hydrograph Representation of
Hydrologic Signatures. Hydrologic signatures
help us understand how well a model represents
important aspects of real-world streamflow, and
where improvement should be made to the model’s
conceptualization (Gupta and Wagener 2008). We
analyzed the hydrologic signatures described by
Addor et al. (2018), and these are listed below in
Table 4. We calculated the true signatures with
USGS streamflow observations, and calculated model
representations with predicted values of daily stream-
flow. We compared true values and predicted values
with a correlation coefficient (r2) across basins (one
value of the observed and predicted hydrologic signa-
tures were calculated per basin), higher values indi-
cate a better representation of hydrologic signature
across basins by the model. We used the Steiger
method to test for statistically significant changes
between the LSTM_A, NWM, and the LSTM post-
processor (Steiger and Browne 1984).

Identifying Basins Best Suited for Post-
Processing with Multi-Linear Regression. The
LSTM post-processors did not improve performance
at every basin. It therefore would be valuable to
know if a LSTM post-processor will work in any par-
ticular basin before implementation. We trained a
multi-linear regression, using the Scikit-learn library
in Python, to predict the performance changes
between the NWM and the LSTM post-processors
(LSTM_PP and LSTM_PPA) at each individual basin.
The multi-linear regression analysis included perfor-
mance scores of the NWM streamflow predictions,
hydrologic signatures, and catchment characteristics
as inputs. These regressors are useful to help inter-
pret what basins might benefit most from an LSTM

TABLE 4. Hydrologic signatures (adapted from Addor et al. 2018).

Signature description Signature name

Average duration of low-flow events low_q_dur
Frequency of days with zero flow zero_q_freq
Average duration of high-flow events high_q_dur
Streamflow precipitation elasticity stream_elas
Frequency of high-flow days high_q_freq
Slope of the flow duration curve slope_fdc
Frequency of low-flow days low_q_freq
Baseflow index baseflow_index
Runoff ratio runoff_ratio
Mean half-flow date hfd_mean
5% flow quantile q5
95% flow quantile q95
Mean daily discharge q_mean
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post-processor. We trained and tested multi-linear
regression models using k-fold cross-validation with
20 splits (k = 20) over the 531 basins. We report the
correlation (r2) of out-of-sample regression predictions
of post-processing changes vs. actual post-processing
changes.

Interpretation of LSTM with Integrated Gra-
dients. We aim to explain the relationship between
a model’s predictions in terms of its features. This
will help us understand feature importance,
identifying data issues, and inform NWM process
diagnostics from the post-processors. We calculated
integrated gradients (Sundararajan and Taly 2017)
to attribute the LSTM inputs (both atmospheric
forcings and NWM outputs) to the total prediction
of streamflow. Integrate gradients are a type of sen-
sitivity analysis that are relatively insensitive to low
gradients (e.g., at the extremes of neural network
activation functions). We calculated integrated gradi-
ents separately for each input, at each timestep, for
each lookback timestep, in each basin. This means
that for nine years of test data with a 365-day
lookback there were about 1.2 million integrated
gradients per input, per basin. The unit of the inte-
grated gradient is technically normalized stream-
flow, but we were mostly interested in the relative
values of integrated gradients of each individual
LSTM input.

Interpretation of LSTM with Correlations
between Performance and NWM Inputs. We
made a direct connection between LSTM post-
processor improvements with the NWM outputs
using correlation. We calculated Pearson R values
between the basin average value of each NWM input
feature and the total performance change (NSE, bias,
and peak timing). We calculated these correlations
for different flow regimes (all flows using the whole
hydrograph, rising/falling limbs using the single day
differentials, and high/low flows using the top 80%
and bottom 20%). The strengths of these correlations
(positive or negative) indicated which types of basins
(via NWM features) are benefiting most from a LSTM
post-processor. Results for rising limbs and falling
limbs of the hydrograph were qualitatively similar to
this figure, and were therefore omitted.

Splitting the CAMELS Catchments by Cali-
brated/Uncalibrated. Of the NWM calibrated
basins, 480 overlap with the 531 CAMELS catch-
ments used in this study. In a separate set of experi-
ments, we trained the LSTM_A and the LSTM
post-processors LSMT_PP and LSTM_PPA) on only
the 480 calibrated basins. We then used the full set of
531 catchments to test the performance out-of-sample.

We analyzed the 480 in-sample basins and 51 out-of-
sample basins separately using the NSE, bias, and
timing error metrics. This allowed us to determine if
the LSTM is a suitable post-processing method to use
in uncalibrated basins. If the post-processors trained
only on calibrated basins can improve streamflow
predictions at uncalibrated basins, then they would
be considered suitable, particularly if there is no sta-
tistical difference between the post-processor’s perfor-
mance improvement over the NWM and/or LSTM_A.

Sensitivity Analysis and NWM Process Diag-
nostics. We trained a set of LSTM post-processors
using different combinations of NWM outputs as
input to the LSTM, as described in Table 5. To test
the sensitivity to the NWM streamflow prediction
itself, we trained an LSTM with only streamflow
(LSTM_Q_only), and excluded it from another
(LSTM_PP_noQ). We tested the sensitivity to the
channel routing (LSTM_chrt) and land surface
(LSTM_ldas) components of the NWM by training
LSTMs with only these dynamic inputs. We trained
these models with the same specifications as
theLSTM_A, LSTM_PPA, and LSTM_PP.

Each of these models (Table 5), in addition to the
main post-processing models presented in Table 3,
have a distinct flow of information that we can use to
diagnose NWM model processes. Figure 2 shows the
information flow of each of the model subcomponents.
We used the performance results of the different
post-processing models to assess how much informa-
tion passes between the model components. Nearing
et al. (2018) described the method to quantify the
information exchange down a modeling chain (i.e.,
integrating over the expected effect of the conditional
probability), but since we used limited outputs from
the NWM reanalysis, rather than the full state space,
we examined the NWM only qualitatively for infor-
mation loss between the major NWM subcomponents
(land surface runoff, overland router, and channel

TABLE 5. Additional models for sensitivity analysis and NWM
diagnostics.

Model label

Number of
dynamic LSTM
parameters Model description

LSTM_PP_noQ 26 LSTM post-processor
(LSTM_PP) but without
streamflow or velocity

LSTM_Q_only 1 LSTM trained with NWM
streamflow only

LSTM_chrt 6 LSTM trained with NWM
channel routing outputs
only

LSTM_ldas 18 LSTM trained with NWM
land surface outputs only
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router). The LSTM extracts information from its
input to make predictions about its target, in our case
streamflow, and we assumed higher streamflow pre-
diction accuracy indicated more information is avail-
able in the NWM components used as input. If a
post-processor made less accurate streamflow predic-
tions than the LSTM_A, then this indicates that the
NWM modeling chain lost information from the atmo-
spheric forcings.

RESULTS

Overall Model Performance

Post-processing the NWM with LSTMs signifi-
cantly improved predictive performance, both with or
without including the atmospheric forcings as inputs
into the model. The LSTM_A, however, is the overall
better performing model. Figure 3 shows the cumula-
tive distributions of three performance metrics (NSE,
peak timing error, and total bias).

The LSTM_PP improved the NSE score of the
NWM mean daily streamflow at a total of 465 (88%)
and reduced accuracy in 66 basins (12%) of the total
531 CAMELS basins, improved the total bias of the
NWM mean daily streamflow at a total of 325 (61%)
of basins and improved the peak timing error at a
total of 488 (92%) of basins. The LSTM_PPA post-
processor improved the NSE score of the NWM mean
daily streamflow at a total of 488 (92%) and reduced
accuracy in 43 basins (8%) of the total 531 CAMELS
basins. The LSTM_PPA post-processor improved the
total bias of the NWM mean daily streamflow at a
total of 331 (62%) of basins and improved the peak
timing error at a total of 494 (93%) of basins. The
LSTM_A ( without NWM model output) outperformed
the NWM at a total of 473 (89%) and reduced accu-
racy in 58 basins (11%), improved the total bias of
the NWM mean daily streamflow at a total of 339
basins (64%) and improved the peak timing error at a

total of 484 basins (91%). The LSTM_PPA improved
the greatest number of basins in terms of NSE and
peak timing error and the LSTM_A was the best per-
forming model in terms of total bias. Figure 4 shows
scatter plots of the post-processor performance at
individual basins against the performance of the
NWM and LSTM_A.

The post-processing models (LSTM_PP and
LSTM_PPA) improved relative to the NWM in similar
basins. The improvements of the two post-processing
methods are correlated across all basins (r2 = 0.995).
Performance comparisons between the LSTM models
and the NWM for each basin are plotted spatially in
Figure 5. Notice that some of the highest NSE
improvements between the LSTM_PP and the NWM
are the worst NSE detriments between the
LSTM_PPA and the LSTM_A, particularly in the
northern plains. This indicates that although the
post-processor greatly improves the NWM, the infor-
mation from the NWM at bad basins hinders the per-
formance of the LSTM, or in other words, the NWM
passes bad information to the LSTM.

Performance by Flow Regime

The LSTM post-processors improved the predictive
performance of the NWM according to the NSE and
KGE metrics, as well as their components (variance
and correlation). A full set of performance metrics
broken down by flow regime are shown in Table 6.
The left side of the table shows the average of metrics
calculated individually at each basin, and the right
side of the table shows the metrics as calculated by
combining the flows from all basins. The NSE
includes both mean and median averages, but the
rest of the metrics are only averaged by the median.

In general Table 6 shows that the LSTM post-
processors improved over the NWM in nearly all flow
regimes according to most metrics. The LSTM_PPA
also improved upon the LSTM_A in more than half
the basins, and by most metrics, though not signifi-
cantly. The prediction of rising limb and high flow

FIGURE 2. Process network diagram showing the information flow of each of these models. Arrows indicate the information flow from one
component of the model to another. The NWM components are outlined with the dashed box. This is also a good guide for understanding the

inputs to the different post-processing models.
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regimes was improved upon by the LSTM post-
processors according to every metric.

Bias was the only metric that was reduced due to
post-processing, and the difference was highest in low
flow regimes. All models poorly predicted flows below
the 20th percentile. This is likely due to the fact that
all models tend to have difficulty predicting zero
streamflow, and the 101 basins with periods of zero
streamflow affected the average performance metrics.
This will be discussed further in terms of hydrologic
signatures.

The right side of the table has better performance
values than the average of metrics calculated

individually at each basin. This is a result of some of
the better performing basins compensating for poorer
performing basins, or from a different perspective,
some basins have a relatively poor performance
which weighs down the average.

Performance by Region

Results from a regional analysis of performance
are shown below in Figure 6. The LSTM post-
processors significantly improved the NSE over the
NWM in 15 of the 18 regions, the peak timing error

FIGURE 3. Results showing the cumulative distributions of model performance calculated as Nash–Sutcliffe efficiency (NSE), total bias, and
peak timing error over a 10-year test period in 531 CAMELS catchments. The NWM reanalysis streamflow was averaged daily, LSTM net-
works shown used (1) the original atmospheric inputs (LSTM_A), (2) NWM states and fluxes only (LSTM_PP), and (3) both atmospheric forc-
ings and NWM states and fluxes (LSTM_PPA). These figures omit the distribution tails for clarity.
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in 16 regions (all regions with enough basins for a
statistical evaluation) and significantly improved bias
in only one region. Note that region 9 was repre-
sented by only two CAMELS basins, which is not suf-
ficient for statistical evaluation. The bias was better
represented by the NWM than the post-processor in
five of the 18 regions, including the entire East Coast
(regions 1, 2, and 3), the Pacific Northwest (17), and
the Lower-Colorado River (15).

The regional performance of the LSTM post-
processors and the regional performance of the
LSTM_A were correlated with the regional perfor-
mance of the NWM in terms of NSE (r2 = 0.78 for
post-processors and 0.63 for LSTM_A) and peak tim-
ing error (r2 = 0.96 for post-processors and 0.92 for
LSTM_A), but not in terms of bias (r2 = 0.24, calcu-
lated on bias although absolute bias is plotted for
clarity). The post-processors and the LSTM_A are
correlated in terms of their bias (r2 = 0.91). A better
model has a higher NSE, bias closer to zero, and a
lower timing error.

Regression to Predict Post-Processing Performance
Improvement

The performance of the LSTM_A was more pre-
dictable than the post-processors. We performed a
multi-linear regression on the target of performance
improvement over the NWM, with inputs being the
catchment attributes and hydrologic signatures, as
well as the NWM performance itself. Figure 7 shows
the results predicting the LSTM improvement over
the NWM at each basin with an r2 value of 0.97,
0.88, and 0.89 for the LSTM_A, LSTM_PPA, and
LSTM_PP, respectively. The high r2 value is due in
part to the outlier basins with abnormally large per-
formance improvements from the LSTM models
(LSTM_A, LSTM_PPA, and LSTM_PP). This means
that the magnitude of the LSTM_A and post-
processors improvement is directly related to the per-
formance of the NWM.

The aim of these results is to understand whether
it is possible to predict where post-processing might

FIGURE 4. Performance differences of the post-processors against the NWM and LSTM_A in 531 CAMELS basins across contiguous United
States (CONUS). Green indicates basins where post-processing improved performance over the NWM and LSTM_A (darker indicates larger
relative improvement), and purple indicates basins where there was a decrease in performance (darker indicating worse relative detriment).
The first column shows the performance difference between the LSTM_PP and the NWM. The second column shows the performance differ-
ence between the LSTM_PPA and the LSTM_A.
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be beneficial (remember that post-processing helped
in most basins). Although we found relatively high
predictability in the improvement expected from post-
processing, a problem is that this requires knowing
ahead of time the NWM performance. This prevents
us from predicting post-processing improvement in
ungauged basins, since calculating the NWM perfor-
mance requires streamflow observations. The correla-
tion analysis below may help inform future efforts to
learn general patterns of post-processor improvement
over both the NWM and the LSTM_A.

Correlations between NWM Inputs and Improvements

Figure 8 shows correlations (over 531 basins)
between the time-averaged NWM inputs and changes
in performance metric scores of the post-processor
relative to the NWM and LSTM_A. The LSTM_PP
was compared against the NWM and the LSTM_PPA

was compared against the LSTM_A, although quali-
tatively both post-processor models were similar. The
rows of this figure show that correlation was weaker
for differences in NSE score than total bias and peak
timing error. Performance differences between the
NWM and the post-processor were most strongly
(anti)correlated with stream velocity from the chan-
nel router and accumulated underground runoff from
the land surface model component: basins with lower
stream velocity (velocity) and less underground runoff
(UGDRNOFF) saw greater performance improvement
from (daily) post-processing. This means that in
basins with high underground runoff and/or high
stream velocity the post-processor improvements
were smaller. In contrast, basins with higher total
radiation (TRAD) and higher latent heat flux (LH)
saw greater improvement due to post-processing. This
means that in basins with more radiation and heat
flux the post-processor improvements were larger. A
direct interpretation of this could be that a flat

FIGURE 5. Per-basin performance change between the post-processors and NWM and LSTM_A in 531 CAMELS basins across CONUS.
Green indicates basins where post-processing improved performance over the NWM and LSTM_A (darker indicates larger relative improve-
ment), and purple indicates basins where there was a decrease in performance (darker indicating worse relative detriment). The first column
shows the performance change between the LSTM_PP and the NWM. The second column shows the performance change between the
LSTM_PPA and the LSTM_A.
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meandering stream in the Southwest will benefit
from post-processing, which is consistent with the
findings of Salas et al. (2018) that WRF-Hydro’s

performance is generally poor in the Southwest. Per-
formance differences between the LSTM_A and the
post-processor were most strongly correlated with

TABLE 6. Predictive performance for NWM, LSTM_A, and the LSTM post-processors during various flow regimes. The NSE and Kling–
Gupta efficiency (KGE) are overall performance metrics of prediction quality. Variance, bias, and correlation (R) are the components of the
NSE. We calculated these in two ways: (1) at each basin and averaged across all basins, and (2) once using the observed and predicted
streamflow values from all basins combined. Note that calculations done once across all basins do not include a test of significance.

Flow categories

Calculated per-basin All basins

NSE (mean) NSE (median) KGE Variance Bias R NSE Variance Bias R

All flows
NWM 0.46 0.62 0.64 0.82 �0.011 0.82 0.75 0.85 �0.02 0.87
LSTM_PP 0.652 0.732 0.742 0.86 0.02 0.872 0.81 0.92 0.02 0.90
LSTM_A 0.69 0.74 0.74 0.83 0.02 0.88 0.82 0.89 0.01 0.90
LSTM_PPA 0.67 0.75 0.76 0.87 0.02 0.88 0.82 0.93 0.02 0.91
Rising limbs
NWM 0.47 0.60 0.60 0.77 �0.07 0.81 0.73 0.82 �0.05 0.85
LSTM_PP 0.642 0.702 0.722 0.832 0.002 0.862 0.78 0.88 0.00 0.88
LSTM_A 0.66 0.71 0.72 0.80 �0.01 0.86 0.78 0.85 �0.01 0.88
LSTM_PPA 0.65 0.72 0.74 0.85 0.00 0.87 0.79 0.89 0.00 0.89
Falling limbs
NWM 0.29 0.62 0.64 0.94 0.03 0.83 0.78 0.90 0.00 0.88
LSTM_PP 0.622 0.752 0.762 0.952 0.07 0.902 0.87 0.99 0.04 0.93
LSTM_A 0.69 0.78 0.77 0.92 0.05 0.90 0.87 0.96 0.03 0.93
LSTM_PPA 0.65 0.77 0.77 0.94 0.05 0.90 0.87 0.98 0.03 0.93
Above 80th percentile
NWM 0.17 0.41 0.54 0.80 �0.13 0.73 0.69 0.83 �0.10 0.84
LSTM_PP 0.472 0.572 0.642 0.82 �0.082 0.802 0.76 0.89 �0.04 0.90
LSTM_A 0.53 0.58 0.67 0.81 �0.08 0.81 0.78 0.86 �0.06 0.88
LSTM_PPA 0.50 0.60 0.69 0.84 �0.07 0.81 0.79 0.90 �0.04 0.89
Below 20th percentile
NWM �18,384.37 �17.47 �1.96 3.79 1.891 0.36 0.37 1.31 0.22 0.81
LSTM_PP �6,941.622 �15.662 �1.282 2.842 3.21 0.432 0.53 1.30 0.33 0.90
LSTM_A �4,749.68 �16.35 �1.31 2.85 3.27 0.43 0.56 1.26 0.33 0.89
LSTM_PPA �5,147.62 �14.66 �1.24 2.85 2.87 0.43 0.58 1.28 0.30 0.90

1Post-processing significantly hurts the NWM.
2Post-processing significantly helps the NWM.

FIGURE 6. Regionally averaged performance metrics for NWM, LSTM_A, and the LSTM post-processors (LSTM_PP and LSTM_PPA) in
different United States Geological Survey water resources regions.
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snow water equivalent and snow depth. This is con-
sistent with the findings of Hansen et al. (2019) that
the NWM represents snowpack hydrology well.

Integrated Gradients

Figure 9 shows the relative strength of the total
attribution of the dynamic inputs to the LSTM_PPA
averaged across the entire validation period and
across basins. The ordered magnitudes of the inte-
grated gradients can be interpreted as corresponding
to the order of importance of inputs. The most impor-
tant dynamic features for the LSTM_PPA were: (1)
precipitation from NLDAS, and (2) routed streamflow
from the NWM point data. Precipitation inputs were
weighted higher than the NWM streamflow output
itself, which means that even when NWM streamflow
data were available, the LSTM_PPA generally
learned to get information directly from forcings
rather than from the NWM streamflow output. This
indicates that the LSTM_PPA generated a new rain-
fall–runoff relationship rather than relying on the

NWM, which is consistent with the overall results
(Figure 2) that showed similar performance between
the LSTM_A and LSTM_PPA.

Figure 10 shows the relative strength of the total
attribution of the dynamic inputs to the LSTM_PP.
Without the atmospheric forcings included in the
post-processor inputs, the NWM streamflow output
was by far the highest contributing dynamic input
feature to the LSTM_PP. The static permeability of
the catchment was the next highest.

Representations of Hydrologic Signatures

Results of the analysis of hydrologic signature rep-
resentation are shown in Figure 11, which also
shows that the hydrologic signatures best repre-
sented by the NWM were similarly those best repre-
sented by the LSTM_PPA. The same was true for the
most poorly represented hydrologic signatures in
both models.

The LSTM post-processors hurt the representation
of the frequency of days with zero flow. There were

FIGURE 7. Predicting LSTM_A, LSTM_PP, and LSTM_PPA performance over the NWM at each basin using a linear regression with NWM
performance and hydrologic signatures as inputs. Scatter plots with all of the 531 basins.
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101 basins with any periods of zero flow. None of
these models do well simulating zero flow, but the
NWM is better at handling this situation, predicting
zero flow periods in 56 of the 101 basins. The
LSTM_A, LSTM_PPA, and LSTM_PP only predicted
periods of zero flows at 35, 29, and 25 basins, respec-
tively. This is an important characteristic in basins
in the Southwest, where the NWM could use the ben-
efit of a LSTM post-processor, so this would be a good
place to focus future research of theory-guided ML
for hydrology.

The LSTM post-processor made a significant
improvement over the NWM for several signatures.
The improvement to runoff ratio, which is the

fraction of precipitation that makes it through the
stream gauge at the surface, could be a compensation
for the uncalibrated soil parameters in the NWM
mentioned by Salas et al. (2018). The LSTM post-
processor improved both high and low flow predic-
tions (5% and 95% flow quantiles), which are impor-
tant for natural resources management. The mean
daily discharge was the best represented hydrologic
signature by all models.

The LSTM_PPA post-processor made significant
improvements over the LSTM for baseflow index.
This is the only sign that an LSTM post-processor
improved over both the NWM and the LSTM_A. This
signature estimates the contribution of baseflow to

FIGURE 8. Correlations between the time-averaged NWM related inputs vs. performance metric differences between the LSTM post-
processors (LSTM_PP and LSTM_PPA) and NWM and LSTM_A.

FIGURE 9. Attributions to the LSTM_PPA predictions. The vertical axis shows the relative magnitude of attribution (importance) for each
input, with precipitation (PRCP) as the top contributor and NWM-predicted runoff into channel reach (q_lateral) contributing the least.
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the total discharge, which is computed by hydrograph
separation. Kleme�s (1986) (summarizing Lindsly’s
Applied Hydrology) cautioned strongly against using
hydrograph separation, because there is no real basis
for distinguishing the source of flow in a stream.

Results Comparing Gauged Basins vs. Ungauged
Basins

Results in Table 7 summarize an analysis designed
to replicate prediction in ungauged basins. The table
has metrics from predictions by the NWM, LSTM_A

and the LSTM post-processors (LSTM_PP and
LSTM_PPA) calculated only at basins that were
either calibrated or uncalibrated, but not both. There
was no statistical difference between the calibrated
and uncalibrated samples. This indicates that the
LSTM post-processor works in uncalibrated basins.
When post-processors were trained only in calibrated
basins (denoted with a “C” in Table 7), however, the
performance in uncalibrated basins significantly dete-
riorated. But this is true for the LSTM_A as well, so
it is not a result of the calibration (as calibration
would not influence the LSTM_A), but a result of pre-
diction at ungauged type basins. However, the

FIGURE 10. Attributions for the LSTM_PP model. Color coded by LSTM input source. The streamflow is overwhelmingly the highest
contributor to the post-processed streamflow prediction.

FIGURE 11. Correlation between simulated and observed per-basin hydrologic signatures from the NWM (blue), LSTM_A (orange),
LSTM_PPA (green), and LSTM_PP (red). Larger values indicate better performance.
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median performance of the post-processor predictions
at ungauged type basins when trained at only cali-
brated basins was still significantly better than the
NWM in the uncalibrated basins.

The NWM, LSTM_A, and the LSTM_PPA had
higher NSE scores in calibrated basins than the
uncalibrated basins. Note that these results are from
the LSTMs (with and without NWM model outputs)
trained on only basins where the NWM was cali-
brated. In the case of the LSTM post-processors the
mean NSE scores in uncalibrated basins were very
low for NSE. This is a result of two outlier basins
(1466500, MCDONALDS BRANCH, Lat: 39.9, Lon:
�74.5, Area: 5.7 km; and 01484100 BEAVERDAM
BRANCH, Lat: 38.9, Lon: �75.5, Area: 7.8 km). Both
of those outlier basins are much smaller, and have
lower flows, than the average of the training set.
Without these basins the mean NSE scores were
0.32, 0.51, 0.56 and 0.56 for the NWM, LSTM_PP,
LSTM_A, and LSTM_PPA, respectively. Table 7 also
shows that the median value of the LSTM_PPA was
higher than the NWM, as was the maximum NSE
value, but the minimum value was exceptionally low.

The total bias in calibrated basins was generally
better (lower) than the uncalibrated basins. The tim-
ing error of the NWM was actually better in the
uncalibrated basins, but the LSTM_A and LSTM
post-processors had better performance in the cali-
brated basins. The NSE values for the NWM,

LSTM_A, and the LSTM post-processors (LSTM_PP
and LSTM_PPA) were significantly different in the
calibrated basins vs. the uncalibrated basins, as were
the differences between the LSTM_A and LSTM post-
processors (LSTM_PP and LSTM_PPA) compared to
the NWM. The bias values were significantly differ-
ent between the two samples (calibrated vs. uncali-
brated), but the differences between LSTM_A and
LSTM post-processors vs. the NWM were not statisti-
cally different. This means that the LSTM models
were successful at predicting streamflow at basins
outside of the calibration set.

LSTM Post-Processor Sensitivity to Inputs and
Application for Process Representation Diagnostics

Figure 12 shows results from the LSTM models
with inputs from different parts of the NWM (land
surface model only, channel router only, predicted
streamflow only, and all states and fluxes). The best
performing LSTM models (LSTM_A and LSTM_PPA)
were the ones trained with inputs that included the
five atmospheric forcing variables with (LSTM_PPA)
and without (LSTM_A) the NWM output (these are
the same models discussed in previous sections
above). This implies that LSTM in general was able
to extract more information from the atmospheric
forcings than the NWM. Each of the LSTM post-

Calibrated basins Uncalibrated basins

Mean Median Max Min Mean Median Max Min

NSE
NWM 0.49 0.64 0.95 �10.81 0.18 0.48 0.79 �7.10
LSTM_PP 0.65 0.73 0.93 �3.32 0.69 0.71 0.89 0.38
LSTM_A 0.68 0.74 0.93 �0.64 0.73 0.75 0.89 0.43
LSTM_PPA 0.66 0.75 0.93 �3.61 0.71 0.73 0.89 0.42
LSTM_PP(C) 0.65 0.73 0.93 �1.86 0.21 0.57 0.75 �8.12
LSTM_A(C) 0.67 0.74 0.93 �1.13 0.51 0.67 0.84 �2.54
LSTM_PPA(C) 0.67 0.75 0.94 �2.71 0.13 0.58 0.84 �14.07
Total bias
NWM 0.01 �0.01 2.57 �0.63 0.00 �0.06 1.84 �0.58
LSTM_PP 0.04 0.02 1.05 �0.24 0.02 0.01 0.27 �0.12
LSTM_A 0.02 0.02 0.56 �0.22 0.02 0.01 0.20 �0.11
LSTM_PPA 0.03 0.02 0.98 �0.21 0.01 0.00 0.22 �0.11
LSTM_PP(C) 0.01 �0.01 0.92 �0.25 0.06 �0.04 2.15 �0.51
LSTM_A(C) 0.02 0.02 0.62 �0.21 0.09 0.04 0.99 �0.20
LSTM_PPA(C) 0.01 0.00 0.95 �0.22 0.06 �0.05 2.89 �0.41
Peak timing error
NWM 1.06 0.91 3.00 0.10 1.04 0.77 2.70 0.25
LSTM_PP 0.55 0.45 1.95 0.04 0.52 0.35 1.59 0.04
LSTM_A 0.53 0.43 1.76 0.00 0.51 0.41 1.50 0.04
LSTM_PPA 0.54 0.42 1.75 0.04 0.51 0.36 1.45 0.05
LSTM_PP(C) 0.55 0.45 2.10 0.00 0.59 0.41 1.76 0.09
LSTM_A(C) 0.52 0.43 1.77 0.00 0.57 0.50 1.50 0.08
LSTM_PPA(C) 0.54 0.41 1.83 0.04 0.57 0.41 1.65 0.13

TABLE 7. Performance of the LSTM and the
LSTM post-processor split between basins
where the NWM was calibrated vs. uncali-
brated. The “C” in the model name denotes

that the model training set only included cali-
brated basins.
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processors made better average daily streamflow pre-
dictions than the NWM itself, indicating that infor-
mation from the atmospheric forcings is lost in the
NWM model structure before the streamflow predic-
tion is made. For example, the LSTM that took as
inputs only the LDAS model output from the NWM
made better predictions than the NWM itself, indicat-
ing that there is more information in the LDAS
states and fluxes than the NWM is able to translate
into streamflow predictions. The same was true for
the states and fluxes of the CHRT component of the
NWM, meaning that information is also lost in the
CHRT component of the NWM model structure.

DISCUSSION

Comparison between the LSTM_A and the Post-
Processors (LSTM_PP and LSTM_PPA)

The LSTM_A, trained only on atmospheric forcings
as dynamic inputs, was better at extrapolating hydro-
logic conditions outside the training set than the
LSTM post-processors (LSTM_PP and LSTM_PPA),
and thus LSTM_A is the better performing model.
This is shown in the analysis of prediction in ungauged
basins, specifically Table 7. The post-processors both

FIGURE 12. Performance of the LSTM post-processor trained with different sets of NWM output. Each of these post-processors outperform
the NWM. LSTM_A is the LSTM trained with atmospheric forcings as dynamic inputs. LSTM_PP is the NWM post-processor trained with
the outputs of the NWM as dynamic inputs. LSTM_PPA used both the NWM outputs and atmospheric forcings as inputs. LSTM_PP_noQ
used all the NWM outputs except for streamflow and velocity from the channel router. LSTM_Q_only used only streamflow from the NWM
output. LSTM_chrt used only the NWM channel router outputs. LSTM_ldas used only the land surface fluxes as inputs.
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failed to make reasonable predictions at two basins
that were much smaller than any basins included
in the training set. The LSTM_A was able to make
good predictions in these basins. Including the
NWM output as dynamic inputs to the LSTM con-
strained the model and prevented it from learning
general hydrologic relationships that can be extracted
to basins with characteristics that might be
unrecognizable.

Potential for Improving the Performance of Both the
NWM and ML

Results presented here show that the LSTM post-
processors are unreliable for improving predictions of
the NWM. The LSTM post-processors did provide sig-
nificant benefit to the NWM streamflow predictions
at almost all (88% and 92% for LSTM_PP and
LSTM_PPA, respectively) of the 531 basins analyzed
here, but was severely detrimental to two basins in
our tests of ungauged basins. In the basins where
this was not the case, it may be possible to use fine
tuning a version of the post-processor that is specific
to each gauge location (as would be done in tradi-
tional model calibration); however, the LSTM_A did
not have this problem and is more reliable. We
trained the LSTMs on headwater basins, so further
work would be needed to include reservoirs, urban
areas, and other management practices. It is worth
noting that these LSTM models can be trained on a
laptop computer in a few hours, a relatively minor
computational cost, and the computational cost of for-
ward prediction is negligible. By comparison the com-
putational cost of calibrating the NWM is much
higher — typically requiring HPC or cloud systems.

The NWM performance and the performance
improvement from the LSTM post-processors
(LSTM_PP and LSTM_PPA) were negatively corre-
lated: basins with a low performance by the NWM
have the highest performance change from the LSTM
post-processors. This means that post-processing can
be expected to correct situations where the NWM
gives bad predictions. Conversely, the performance of
the NWM and the LSTM_A (the LSTM trained with-
out NWM model outputs) were minimally correlated
(r2 = 0.42, 0.30, and 0.67 for NSE, bias, and timing,
respectively). Considering also that the overall perfor-
mance of the LSTM_A changed only minimally from
the addition of the NWM inputs (as shown in Fig-
ures 3–5; Table 6) and that the LSTM_PPA still pre-
ferred to extract more information from precipitation
forcings (shown in Figure 9), we might conclude that
the LSTM post-processors learned new patterns of
the rainfall–runoff response, which are not fully rep-
resented by the NWM. But this relationship is also

learned by LSTM_A, without the influence of the
NWM. The overall improvement in the representation
of hydrologic signatures indicates the post-processor
may be a better representation of physical flow pat-
terns than either the NWM or the LSTM_A, though
not significantly. The interpretation of the integrated
gradient (Figures 9 and 10) and the correlations
between improvement and NWM features (Figure 8)
indicate that this improvement of flow patterns comes
from information in the NWM representation of
streamflow and snow states.

Application to Real-Time Forecasting

The NWM is not simply a rainfall–runoff simulator;
it simulates flow through 2.7 million river reaches
around CONUS, dam operations, land surface pro-
cesses, hydraulics, and other complications of large
domain hydrology. The nature of the CAMELS catch-
ments selected in these experiments is such that they
have few engineered control structures and are under
20,000 km2. The results presented in this paper show
that the LSTMs improved streamflow predictions in
the catchments studied here, which all had limited
human disturbance (e.g., dams, reservoirs, etc.). Krat-
zert, Klotz, Herrnegger, et al. (2019) showed that
LSTM_A predictions extend into ungauged basins,
and this is consistent with our results. Our results
(section “Results comparing calibrated basins vs.
uncalibrated basins”) show that the LSTM_A is a
much better choice than the post-processors in
ungauged basins, which is the majority of the NWM
domain. The immediate potential for improving real-
time forecasting could be deploying an LSTM_A for
streamflow prediction in undisturbed catchments, and
undisturbed subcatchments upstream of unnatural
hydrologic conditions such as dams, agriculture lands,
and urban centers. This would allow for retaining con-
ceptual representations of lakes and reservoirs that
already exist in the NWM.

Diagnosing Process-Based Models, Physical Processes,
and Data Concerns

The sensitivity analysis reported in Figure 12
showed that some components of the NWM caused
poor predictions. Specifically, information was lost in
channel router (CHRT) component of the model. This
diagnostic method could be used to compare different
schemes for future versions of the NWM. For
instance, changing the routing function might con-
serve timing information from the land surface
fluxes, or modifying the evapotranspiration options in
Noah-MP may conserve mass bias information from
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the NWM forcing engine. Such improvements could
be quantified with this post-processing method.

Each of the post-processing models tested for sensi-
tivity (Figure 12) fall, roughly and inclusively,
between the NWM and the LSTM_A. Based on the
relative positions between those bounding curves, we
can identify sources of information loss through the
NWM modeling chain:

1. The channel routing outputs contain more infor-
mation of simulation bias than timing, meaning
the channel router moves with poor timing, but
conserves mass well.

2. The land surface outputs contain more informa-
tion of simulation timing than bias, meaning the
land surface component does not conserve mass
well, but delivers water to the channel at appro-
priate times.

3. Information is lost during channel routing after
the mass is delivered, indicating the channel rou-
ter is not functioning properly.

There is potential to expand this analysis, break-
ing down the NWM components even further. Quan-
tification can be done with the full state space from
the NWM. Retrospective runs using new versions of
the NWM should output the full state space for these
types of analysis. This diagnostics analysis using ML
post-processing is possible with any physics-based,
conceptual or process-based dynamics model.

Moving Forward with Theory-Guided ML

The post-processing procedure presented here is
one of the cruder techniques currently available for
combining process-based and data-driven models.
Several other methods of combining the benefits of
ML (predictability) with the benefits of physically
realistic hydrologic theory (robustness) are in devel-
opment. For example, Pelissier et al. (2019) inte-
grated a trained Gaussian Processes into the state-
space dynamics of a process-based land surface model
for predicting soil moisture time series. Another
example is using physical principles to constrain the
loss function of an ML model during training — for
example, Hoedt et al. (2021) integrated mass balance
constraints into an LSTM and applied this model to
the same 531 basins used in this study. Implement-
ing post-processing is relatively straightforward com-
pared to other techniques such as adding physics into
ML code or using ML to dynamically update the state
variables, but is unreliable when the process-based
models used as input is uncalibrated.

Using ML for post-processing has the potential for
advancing the explainability of data-driven models.

We showed that the LSTM model representation of
hydrologic signatures (with and without NWM model
outputs) is highly correlated with the NWM. This
indicates that the “learned” functions mapping inputs
to streamflow are actually quite similar. We might
have trouble expressing the “learned” LSTM with
compact formulas (e.g., PDEs), given the high num-
ber of trained model weights, but we can use them
with confidence knowing their structural similarities
with process-based models like the NWM.

CONCLUSION

The LSTM post-processors (LSTM_PPA and
LSTM_PP) significantly outperformed the NWM, but
did not consistently, nor significantly, outperformed
the LSTM_A (the LSTM model trained without the
NWM model outputs as LSTM inputs). LSTMs, in gen-
eral, are capable of learning the dynamics of rainfall–
runoff processes, gaining little additional information
from the conceptualizations coded within the NWM.
The “pure” post-processing model (LSTM_PP) outper-
formed the NWM in terms of bias, and significantly
outperformed the NWM in terms of NSE and timing. A
decision to use the LSTM as a post-processor for the
NWM should be made with professional judgment,
considering the comparison of the NWM, LSTM, and
LSTM post-processor’s performance. In locations
where the NWM is not calibrated, or the hydrologic
conditions are not well understood, it would be best to
use the LSTM without the influence from the NWM.

The results indicate that there is more information
in the atmospheric forcings about streamflow obser-
vations than in the NWM outputs, including the
NWM streamflow prediction. The NWM loses infor-
mation between the atmospheric forcing inputs and
the outputs. The NWM land surface component
(LDAS) loses information about mass conservation
(shown from the bias error), and the channel router
(CHRT) loses information about streamflow timing.
The NWM routing scheme should be considered as a
priority for improving the NWM.

DATA AVAILABILITY

All data and code used in this paper are publicly
available in the following locations: U.S. National
Water Model: https://docs.opendata.aws/nwm-archive/
readme.html. CAMELS data: https://ral.ucar.edu/
solutions/products/camels. Data processing code:
https://github.com/jmframe/nwm-reanalysis-model-data-
processing; https://doi.org/10.5281/zenodo.4642605.
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LSTM code: https://github.com/kratzert/ealstm_regional_
modeling. Post-processing and analysis code: https://
github.com/jmframe/nwm-post-processing-with-lstm;
https://doi.org/10.5281/zenodo.4642603.
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