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Abstract

Understanding streamflow dynamics in watersheds affected by human activity and climate
variability is important for sustainable water and environmental resource management.
This study evaluates the vulnerability of Alabama watersheds to anthropogenic and cli-
matic changes using an integrated framework combining GIS, remote sensing, hydrological
modeling, and machine learning (ML). Three Soil and Water Assessment Tool (SWAT)
models, differing in spatial resolution and soil inputs, were developed to simulate stream-
flow under baseline and land-use/land cover (LULC) scenarios from 1990 to 2023. The
model, built with consistent 100 × 100 m rasters and fine-resolution SSURGO (Soil Survey
Geographic Database) soil data, achieved the best calibration and was selected for detailed
analysis. Streamflow trends were assessed over two periods (1993–2009 and 2010–2023) to
help isolate climate variability (from LULC effects), while LULC changes were evaluated
using 1992, 2011, and 2021 maps. A Long Short-Term Memory (LSTM) model further en-
hanced simulation accuracy by integrating partially calibrated SWAT outputs. Watershed
vulnerability was ranked using a multi-criteria framework. Two watersheds were classified
as highly vulnerable, nine as moderately vulnerable, and three as having low vulnerability.
Basin-level contrasts revealed moderate climate impacts in the Tombigbee Basin, greater
climate sensitivity in the Black Warrior Basin, and LULC-dominated impacts in the Al-
abama Basin. Overall, LULC change exerted stronger and more spatially variable effects
on streamflow than climate variability. This study introduces a transferable SWAT–ML
vulnerability ranking framework to guide watershed and environmental management in
data-scarce, human-modified regions.

Keywords: arc SWAT model; climate variability; land use; watershed; machine learning;
vulnerability rank

1. Introduction
Human activities and climate variability are increasingly altering both the quantity

and quality of surface water resources, with direct implications for ecosystem health and
environmental sustainability. Agricultural practices, such as fertilizer and pesticide use,
contribute to elevated nutrient and contaminant levels that are closely tied to streamflow dy-
namics [1–3]. These pollutants are mobilized through watersheds [4,5], where they interact
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with soils, groundwater, and aquatic ecosystems, affecting biodiversity and water quality.
In controlled watersheds, the presence of reservoirs and dams further disrupts natural
hydrological regimes, altering sediment transport and nutrient cycling. Although mitiga-
tion measures such as filter strips [6], drainage modifications [7], and reduced nitrogen
application [8] have been proposed, evaluating their long-term environmental effective-
ness requires quantitative modeling of streamflow and pollutant transport under both
natural and anthropogenic influences that fluctuate over multi-decadal timescales. Such
evaluations are important for developing evidence-based strategies to support sustainable
watershed management and inform environmental policy in response to climate variability
and land-use change.

Hydrological models are widely used to evaluate streamflow [9,10], yet many water-
sheds remain ungauged or lack sufficient monitoring data. To address these data gaps,
parameter estimation methods ranging from regression-based approaches [11–15] to geosta-
tistical techniques [13,16] and similarity-based regionalization [17,18] have been developed.
Among existing tools, the Soil and Water Assessment Tool (SWAT) is one of the most
widely applied for assessing the impacts of land-use/land cover (LULC) change [19] and
climate variability on watershed hydrology across single [9] or multiple watersheds [20].
Its strengths lie in simulating large-scale, long-term hydrological processes and in coupling
with SWAT-CUP for calibration, validation, and uncertainty analysis [21–24].

Previous hydrological studies in Alabama, USA, have largely concentrated on un-
controlled watersheds [25,26]. However, the Tombigbee–Black Warrior–Alabama River
Basin contains more than 30 reservoirs, creating hydrological systems shaped by both
natural variability and human regulation. This highlights the need to evaluate streamflow
dynamics in both controlled and uncontrolled basins. At the same time, ongoing LULC
changes—particularly urban expansion and forest loss—are altering the hydrological bal-
ance by increasing surface runoff and reducing groundwater recharge [27–29]. Climatic
variability further compounds these pressures through shifts in rainfall patterns and stream-
flow volumes [30]. Together, these interacting stressors introduce significant uncertainty in
water availability, water quality, and overall watershed resilience across Alabama.

While traditional hydrological models provide valuable process-based insights, they
often struggle to capture nonlinear interactions among climate variability, human inter-
ventions, and watershed response. Recent advances in machine learning (ML), especially
Long Short-Term Memory (LSTM) networks, offer complementary strengths by capturing
temporal dependencies in hydrological time series and improving predictions in data-
scarce settings [31–36]. However, integration of ML with process-based models remains
limited, particularly in regions where both controlled and uncontrolled watersheds must
be considered simultaneously.

This study addresses these gaps through four objectives:

(i) Develop and calibrate SWAT models for both gauged and ungauged watersheds,
extending modeling capacity to data-limited regions;

(ii) Quantify the relative contributions of LULC change and climate variability to stream-
flow across temporal scales;

(iii) Integrate LSTM models with process-based simulations to improve predictive accu-
racy, particularly for peak-flow conditions;

(iv) Establish a multi-criteria vulnerability ranking framework that incorporates physical,
static, and dynamic watershed attributes in a systematic, comparable manner.

By analyzing both baseline and LULC change scenarios over more than three decades,
this study provides one of the first comprehensive, basin-scale evaluations of watershed
vulnerability in Alabama that accounts simultaneously for climate variability, land-use
transitions, and reservoir regulation. The integrated SWAT–LSTM framework represents
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a novel scientific contribution, combining process-based and data-driven approaches to
improve model robustness in both gauged and ungauged watersheds. The multi-criteria
ranking system delivers a transferable decision-support tool for prioritizing watershed and
environmental management under competing pressures from agriculture, urbanization,
and ecological demands. More broadly, the methodology advances sustainable water and
environmental resource management in regions worldwide where monitoring networks
are sparse and human–climate interactions are intensifying, with direct implications for
water security, ecosystem services, and environmental policy.

2. Study Area
The study area encompasses the Tombigbee-Black Warrior-Alabama River Basin,

covering approximately 1119 thousand square kilometers in Alabama, located in south-
east United States (U.S). Agricultural activity and LULC dynamics are prominent. Prior
hydrology-related measurements, e.g., water mixing, sediment supply and agroecosystem,
have been conducted in and around this place [37–41], indicating elevated vulnerability
to hydrologic effects. According to Grabowska [42], streamflow strongly influences the
transport of dissolved constituents. In addition, given the presence of large reservoirs
and an extensive stream network, SWAT is well suited to identify groundwater-sensitive
parameters. According to ADECA and OWR [43], about 6% (496 million gallons per day,
MGD) of Alabama’s total water use is supplied from groundwater.

Figure 1a locates the study area and maps two hydrologic datasets: streamflow-
monitoring (gauged) sites (both regulated and unregulated) and 35 weather stations. These
points are important for reducing flood risk at cross-dam sites and within ungagged sub-
basins. In total, 35 sub-basins were delineated (in Figure 1a), 32 of which contain cross-dams
(Figure 1b). Among these, 9 watersheds were calibrated using available USGS streamflow
monitoring data, while 7 sub-basins remain uncontrolled, 5 of which were calibrated. The
region exhibits diverse lithological formations associated with the Appalachian Mountain
range, largely exposed through intense weathering and erosion (Figure 2a). Reservoir
properties are summarized in Tables S1 and S2: the largest reservoir by volume is W5
(Lewis Smith Reservoir) with a capacity of 2.06 billion cubic meters, while the largest by
surface area is W23 (Lake Martin Reservoir), covering 16.9 thousand square kilometers.
Hypsometric integral (HI) values—used to assess watershed erosional maturity—indicate
that most watersheds fall within youthful to mature stages of geomorphic development
(Figure 2b). The same figure also presents drainage density (DD) values for each watershed.

Figure 1. (a) Location map of the study area, showing 35 delineated watersheds (W1~W35);
(b) Reservoir locations and the spatial distribution of hydrological provinces.
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Areas with low DD but high HI (convex shape) are typically dominated by subsurface
(groundwater) flow due to greater storage and slower drainage; at higher DD, this rela-
tionship reverses [44]. Figure 2c shows how the extent of five major LULC classes change
over time.

Figure 2. (a) Exposed lithological formations vulnerable to pollution; (b) Hypsometric integral (HI)
values for 35 watersheds, illustrating erosional stages, where the red horizontal line distinguishes
younger from mature basins, and the black line separates mature from younger basins [45]. Drainage
density (DD, km/km2) is also shown; (c) Yearly LULC classifications for 1992, 2011, and 2021, derived
from NLCD raster data.

2.1. Rainfall Pattern

Weather stations (marked in Figure 1a), covering the period 1990–2023, were used
to capture conditions ranging from near-normal to extreme drought events. Extending
the analysis period strengthens the model by incorporating a wider range of dry and
wet conditions [46]. Based on the 12-month Standardized Precipitation Index (SPI-12)
calculated from monthly data, three major drought events were identified: 1999–2003,
2006–2009, and 2011–2013, along with several smaller events. Basically, longer timescales
(9–12 months) are used to evaluate hydrological droughts, reflecting water shortages in
streamflow and artificial reservoirs [47]. A holistic overview of these indices and their
limitations can be found in literature [48–51]. Figure 3a–c presents SPI-12 graphs for three
representative stations (sub-basins) 3, 7, and 11. Although SPI errors tend to occur during
extreme droughts or very wet conditions, such variability does not substantially affect the
overall reliability of the results [46].

Innovative trend analysis has been widely used to evaluate long-term rainfall patterns
and the impacts of climate variability [52–58]. In this study, rainfall trends are illustrated in
Figure 3d–f, where the X-axis represents the first half of the record and the Y-axis represents
the second half. Most weather stations indicate decreasing rainfall trends; however, stations
in watersheds W5, W7, W8, W10, W14, W15, W16, W22, W33, and W35 show increases.
The strongest positive trend was observed in watershed W8 (slope = +0.0256), while the
most pronounced decline occurred in watershed W34 (slope = −0.0355).

Figure 3g compares the statistical significance of the metrics across watersheds. Trend
slopes span −0.036 (W2) to 0.0256 (W 29). The 95% confidence intervals have upper
bounds from 0.00179 (W20) to 0.00505 (W32) and lower bounds from −0.00179 (W22) to
−0.00505 (W33). Correlations are very high (R2 > 0. 98). The trend indicator ranges from
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−0.5662 (W2) to 0.4596 (W29). The slope standard deviation varies from 0.00091 (W33) to
0.00258 (W22).

 

Figure 3. (a–c) Representative SPI-12 drought index graphs highlighting three major drought events
(1999–2003, 2006–2009, and 2011–2013, shown in red). (d–f) Innovative trend analysis of rainfall,
where the X-axis represents the first half of the time series and the Y-axis represents the second half.
(g) All-watersheds trend graphs with different statistical parameters: the left vertical axis applies to
all parameters except the trend slope, which uses the right vertical axis.

2.2. LULC Pattern

This study uses NLCD datasets from 1992 (13 LULC classes), 2011 (15 classes), and
2021 (15 classes) as model input, an approach widely applied in the U.S and consistent
with prior hydrologic modeling (e.g., Kim et al. [59]). For comparative analysis, the
NLCD classes were grouped into five major categories: (1) water bodies (WATR, WETF,
WETN); (2) urban areas (URLD, URMD, URHD, UIDU, UCOM); (3) forests (FRSD, FRSE,
FRST); (4) grasslands (RNGB, RNGE, SWRN); and (5) agricultural land (AGRR, WWHT,
HAY). Abbreviations and corresponding areas are listed in Table S3, while Figure S1a–c
in the Supplementary Materials illustrates comparative changes across years. Forests
cover the largest proportion of land area, although total forest cover has declined over
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time. Agricultural land also declined markedly, from 20,317 km2 in 1992 to 17,196 km2

in 2021, except for HAY, which expanded from 11,566 km2 to 14,636 km2. Grasslands,
though decreasing in most subclasses, showed an overall increase due to expansion of
RNGE and RNGB. Urban areas consistently expanded, while water bodies—particularly
WETN—grew from 301 km2 to 904 km2 between 1992 and 2011. Similar LULC patterns
have been reported across Alabama using NLCD data [26]. Google Earth Engine [60] is
widely used for LULC analysis in global studies. In addition, Abburu and Golla [61] review
various image classification techniques.

2.3. Soil Distribution

The earliest widely used open-source soil dataset was produced by the Food and
Agriculture Organization (FAO) in 1981 [62]. In addition, a 1:5,000,000-scale World Soil
Map, compiled by soil scientists over the two decades following 1961, is available. A more
recent global soil database, SoilGrids (since 2016), provides higher-resolution, regularly
updated soil information [63]. For this study, we used SSURGO (Soil Survey Geographic
Database) developed for the United States in Models M1 and M2, and incorporated the FAO
soil raster (18 soil classes) in Model M3 to characterize the study area. SSURGO soil raster
supported full spatial coverage; however, STATSGO (State Soil Geographic Database) was
considered as a fallback. The STATSGO database integrates geology, topography, vegetation,
climate, and Landsat imagery [64]. Both SSURGO and STATSGO were developed by the
U.S. Department of Agriculture’s Natural Resources Conservation Service (NRCS) [65].
Their nominal mapping unit areas are ~0.02 km2 (2 ha) for SSURGO and ~6.25 km2 (625 ha)
for STATSGO, with map scales ranging from 1:31,680 to 1:15,840 [66]. In this study, SSURGO
provided the soil inputs for the hydrologic simulations, providing 5125 unique soil classes
across the study area (Figure 4a,b).

Figure 4. Soil classification maps used in the study: (a) Soil map from the FAO dataset; and
(b) High-resolution soil map from the SSURGO database.

3. Sources of Data
The SWAT model requires multiple climatic inputs, including solar radiation, humidity,

wind speed, precipitation, and temperature, to compute the water-balance components.
In this study, these data were obtained from NASA Power (Table 1). A Digital Elevation
Model (DEM) at 1-arc-second resolution, derived from the Shuttle Radar Topographic
Mission (SRTM) via the USGS Earth Explorer, was used to derive watershed characteristics
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such as depression fill, flow direction, flow accumulation, and watershed delineation. All
rasters were projected to EPSG:9784 and processed in ArcGIS 10.3 (extraction, resampling,
mosaicking, and masking). Soil information was obtained from the FAO map catalogue
and the USDS NRCS SSURGO database. Following watershed delineation, LULC, soil
raster, and slope (derived from DEM) were overlaid to generate Hydrologic Response
Units (HRUs)—spatially homogeneous units defined by land cover, soil, and slope [67,68].
Reservoir data were compiled from the Alabama Reservoir Outdoor database, and the
observed streamflow records were collected from the USGS National Water Information
System. A summary of all datasets, variables, and software tools is provided in Table 1.

Table 1. Data sources used in this study, including spatial datasets, climate variables, and hydrologic inputs.

Data Sources Types

Climate data
From NASA website: (https:
//power.larc.nasa.gov/data-access-viewer/,
accessed on 1 January 2025)

(i) Solar Radiation; (ii) Humidity; (iii) Wind;
(iv) Rainfall; (v) Temperature.

LULC

National Land Cover Database (NLCD):
https://www.sciencebase.gov/catalog/item/
6345b637d34e342aee0863aa, accessed on
1 January 2025

Years: 1992; 2011; 2021

DEM USGS Earth Explorer SRTM 1 arc second; 30 m × 30 m resolution.

Soil shapefile

FAO Map Catalog:
https://www.fao.org/soils-portal/data-hub/
soil-maps-and-databases/faounesco-soil-
map-of-the-world/en/, accessed on
1 January 2025

Different soil types with associated chemical
and textural properties

Soil Survey Geographic (SSURGO):
https://nrcs.app.box.com/v/soils/folder/23
3398887779, accessed on 1 January 2025

Cross dam
information

Reservoirs|Outdoor Alabama:
https://www.outdooralabama.com/
wherefish-alabama/reservoirs, accessed on
1 January 2025

Reservoir capacity, discharge, primary spillway.

Lithological
shapefile

Geological Survey of Alabama (GSA):
https://www.gsa.state.al.us/gsa/
groundwater/assessment, accessed on
1 January 2025

Different lithological formations exposed on
the surface.

Stream flow/
Monitoring points

USGS Current Water Data for the Nation
(River discharge in meter cube per second):
https://waterdata.usgs.gov/al/nwis/wu,
accessed on 1 January 2025

Stations: M1—USGS 02433496; M2—USGS
02433500; M3—USGS 02437100; M4—USGS
02441390; M5—USGS 02448500; M6—USGS
02447025; M7—USGS 02448900; M8—USGS
02467000; M9—USGS 02469761; M10—USGS
02453500; M11—USGS 02465000; M12—USGS
02398300; M13—USGS 02399200; M14—USGS
02397530; M15—USGS 02400100; M16—USGS
02407000; M17—USGS 02414500, M18—USGS
02414715; M19—USGS 02419890; M20—USGS
02420000; M21—USGS 02428400 (Figure 1a)

4. Methodology
To evaluate the impacts of human intervention and climatic change, multiple mod-

els were developed using ArcSWAT (a long term, large-scale, process based and semi-

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
https://www.sciencebase.gov/catalog/item/6345b637d34e342aee0863aa
https://www.sciencebase.gov/catalog/item/6345b637d34e342aee0863aa
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://nrcs.app.box.com/v/soils/folder/233398887779
https://nrcs.app.box.com/v/soils/folder/233398887779
https://www.outdooralabama.com/wherefish-alabama/reservoirs
https://www.outdooralabama.com/wherefish-alabama/reservoirs
https://www.gsa.state.al.us/gsa/groundwater/assessment
https://www.gsa.state.al.us/gsa/groundwater/assessment
https://waterdata.usgs.gov/al/nwis/wu
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distributed watershed model) following a structured sequence of steps (Figure 5). The
multi-model strategy reduces uncertainty through comparison.

Figure 5. Workflow for assessing LULC and climate variability impacts. Step I: SWAT model
development—build, calibrate, and validate the baseline model (M1), then construct two LULC sub-
models (2010 and 2021) and quantify LULC change impacts using the R script (https://github.com/
tamnva/SWAT_LUC accessed on 1 January 2025). LULC models are calibrated with the best-fit param-
eters from M1. Interim: Perform watershed vulnerability ranking based on SWAT outputs. Step II:
Physics-informed ML development—train an LSTM model using SWAT outputs and static/dynamic
predictors to refine simulations. Step 1: Develop/calibrate/validate BL (M1) and LULC submodels.
Step 2: Partition the simulation period into 1993–2009 and 2010–2023. Step 3: Integrate results to
separate and assess the contributions of climate variability and LULC change.

In Step I (a), we prepared required rasters and meteorological datasets for watershed
delineation, characterization, and HRU development. Reservoir attributes, climate, lithol-
ogy, and LULC inputs were incorporated to simulate hydrologic processes. In Step I (b),
we calibrated the model with SWAT-CUP, identifying influential streamflow parameters
and iteratively adjusting their ranges to improve agreement with observations.

In Step II, we applied a physics-informed transfer-learning LSTM (a recurrent neu-
ral network) to enhance performance by integrating partially calibrated SWAT outputs
with static and dynamic predictors. Model skill was evaluated using Nash–Sutcliffe Effi-
ciency (NSE). We then conducted scenario analysis comparing the baseline (BL) model to
two LULC-based submodels (Figure 5), followed by watershed vulnerability ranking using
a multi-criteria framework.

https://github.com/tamnva/SWAT_LUC
https://github.com/tamnva/SWAT_LUC
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4.1. SWAT Model Overview and Development of Multiple SWAT Models

SWAT is a long-term (e.g., 30 years here), process-based, semi-distributed model de-
signed to simulate the environmental impacts of land use and climate change at daily or
monthly time steps [69]. Detailed theoretical documentation is available in previous litera-
ture [70–72]. Land use and climate strongly influence water, sediment, and chemical yields,
and SWAT provides insights into these processes through comprehensive water balance
calculations. In both reservoir and watershed modeling, the water balance component—the
main driver of SWAT—simulates the effects of hydrologic inputs and outputs on single
plant growth [69]. To estimate sediment yield, SWAT incorporates the Modified Universal
Soil Loss Equation (MUSLE) developed by Williams and Berndt [73]. Watershed hydrology
in SWAT is represented in two phases: (1) the land phase, which generates water, sedi-
ment, nutrient, and pesticide loads within each sub-basin, and (2) the routing (or stream)
phase, which governs the transport of these loads through the channel network to the
watershed outlet [69].

For this study, three major SWAT models—M1, M2, and M3—were developed by
keeping the initial 3-year warmup period. Each model includes three sub-models based
on LULC scenarios: (a) the baseline (BL) scenario, (b) a 2011 LULC-based sub-model, and
(c) a 2021 LULC-based sub-model. The sub-models were constructed using LULC maps
from 1992, 2011, and 2021, respectively, to generate distinct HRUs as indicated in Figure 5,
sub-step (i) of Step 1. The grid sizes and raster sources for each model are summarized in
Table 2. This design facilitates evaluation of how input resolution and data origin influence
hydrologic simulation results identified before [64]. To manage HRU complexity and
ensure efficient model performance, thresholds were applied for land use (15%), soil (5%),
and slope (10%), consistent with values reported in prior studies [10,74,75]. Slope classes
were defined as follows: for M1 and M3—0–20◦, 20–40◦, 40–60◦, and 60–91◦; for M2—0–30◦,
30–60◦, 60–90◦, and 90–120◦. These ranges follow Ougahi et al. [76].

Table 2. Input parameters and grid sizes for three SWAT models (M1, M2, and M3) and parameter
settings for the ML model. The digital elevation model (DEM) data are from SRTM, obtained via the
USGS Earth Explorer portal. Soil source for each model: M1: SSURGO (NRCS; full coverage); M2:
SSURGO (NRCS; full coverage); and M3: FAO global soil raster (18 classes). STATSGO was evaluated
as a potential fallback during preprocessing but was not used, because SSURGO provided complete
coverage of the study area.

Layer Parameters
M1 M2 M3

BL Model LULC Model BL Model LULC Model BL Model LULC Model

DEM Grid size:
Source:

100 × 100 m
(SRTM)

100 × 100 m
(SRTM)

60 × 60 m
(SRTM)

60 × 60 m
(SRTM)

100 × 100
m (SRTM)

100 × 100 m
(SRTM)

LULC Grid size:
Source:

100 × 100 m
(NLCD)

100 × 100 m
(NLCD)

30 × 30 m
(NLCD)

30 × 30 m
(NLCD)

100 × 100
m (NLCD)

100 × 100 m
(NLCD)

Soil Grid size:
Source:

100 × 100 m
(SSURGO)

100 × 100 m
(SSURGO)

100 × 100 m
(SSURGO)

100 × 100 m
(SSURGO)

100 × 100
m (FAO)

100 × 100 m
(FAO)

Impacts of climate and land-use/land-cover (LULC) change on streamflow were
evaluated for models M1–M3. Scenario 1 (baseline, BL) used LULC fixed at 1992 with
long-term climate data; Scenario 2 used LULC from 1992, 2011, and 2021, with an R
script producing the final HRUs. For each scenario, streamflow (SF) values were split into
1990–2009 and 2010–2023 and averaged (Figure 5, Step 2). Climate- and LULC-related
SF effects were isolated by subtraction (Figure 5, Steps 3A and 3B). This multi-model
framework enables comparisons across models and validation against observed runoff.
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4.2. Machine Learning Model (LSTM) Development Using Transfer Learning

LSTM networks are widely used for sequential data and were designed to overcome
the vanishing-gradient limitations of standard RNNs. Each LSTM unit contains a memory
cell and three gates—input, forget, and output—that regulate information flow by deciding
what to write, what to erase, and what to expose. The input gate admits relevant infor-
mation to update the cell state, the forget gate discards unnecessary information, and the
output gate determines what information is passed to the next step. To improve runoff
simulation accuracy—particularly for peak flows—partially calibrated monthly outputs
from SWAT were integrated into a machine learning (ML) model [77]. The objective was to
compare the performance of SWAT and ML approaches and to identify key input features
influencing runoff. Transfer learning was employed to leverage the process-based strengths
of SWAT while enhancing predictive accuracy through data-driven methods.

The ML model employed a relatively simple architecture with an output size of 1,
hidden size of 128, batch size of 28, and three layers. Sequence lengths were set to 5 for
W4, 8 for W19, and 4 for the remaining watersheds. We trained the models with the Adam
optimizer and tuned hyperparameters to their optimal values. Data was partitioned into
80% for training, 10% for testing, and 10% for validation.

Input rationale and hydrologic justification: The current study grouped ML predic-
tors into four hydrologically motivated sets: (i) static physiography—area, mean slope, and
mean elevation—to constrain storage, drainage potential, and baseline runoff propensity;
(ii) dynamic climate—monthly precipitation and temperature—to drive seasonality and
interannual variability; (iii) dynamic land surface—monthly watershed LULC fractions—to
reflect gradual shifts in infiltration and runoff generation; and (iv) a physics-informed
predictor—partially calibrated SWAT-simulated runoff—to inject process structure via
transfer learning, which stabilizes learning and helps correct residual biases, particularly
around peak flows. This architecture was selected to balance computational efficiency with
sufficient complexity to capture temporal dependencies in hydrological data.

4.3. Multi-Model Calibration, Validation, Uncertainty, and Sensitivity Analysis Using
SWAT-CUP

Model calibration and validation are critical—but often challenging—steps in
hydrologic modeling, particularly when model results are used to inform decision-
making [13,78–80]. Calibration outcomes are influenced by model uncertainty, which
arises from model conceptualization, parameter selection, and methodological approach.
This uncertainty can be quantified using global sensitivity functions and variance-based
methods [81,82]. Calibration with SWAT-CUP is a semi-automated process in which pa-
rameter values and ranges are manually refined and progressively narrowed through
multiple rounds of iterative adjustments between automatic calibration runs [9,83]. In this
study, however, separate calibration for each LULC-based model did not yield significant
differences in performance.

Among the three models, M1 was selected for full calibration and validation. A total
of 38 parameters were adjusted, categorized as follows: groundwater (6), management (2),
HRU (10), routing (2), basin (16), and soil (2). Based on Bauwe et al. [84], five iterations
with 100 steps each were deemed sufficient to identify an optimal parameter set. The
final calibrated parameters from M1 were applied to M2 and M3 for both BL and LULC
change scenarios.

Model performance and watershed vulnerability were evaluated using four statis-
tics: coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE; ≥0.50), percent bias
(PBIAS; ≤15% considered satisfactory), and Kling–Gupta efficiency (KGE) [84,85]. These
metrics are widely recommended for hydrologic model evaluation, with suitability thresh-
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olds following Moriasi et al. [86]. For the ML model, NSE was also used as the primary
evaluation metric.

Sensitivity analysis identifies influential parameters, improving calibration efficiency,
refining uncertainty estimates, and enhancing overall model performance and robust-
ness [69,81]. In this study, in addition to streamflow calibration and validation, sensitivity
analysis was conducted using the SUFI-2 algorithm in SWAT-CUP [87]. Two statistical
indicators were used during calibration: the p-value (p < 0.05 indicates higher sensitivity)
and the t-statistic (larger absolute values indicate higher sensitivity) [81].

4.4. Parameters Regionalization

Parameter regionalization helps assess watershed homogeneity and enables hydro-
logic calibration in ungauged basins [88]. In this study, we used a mean-value approach,
defining parameter ranges by averaging the minimum and maximum values from gauged
watersheds [13]. These averaged ranges were applied in calibration tests, refined within
stream sub-basins based on global performance metrics (e.g., NSE), and then transferred to
ungauged basins.

4.5. Watershed Ranking (WR)

We applied the Analytical Hierarchy Process (AHP) and Principal Component Analy-
sis (PCA), consistent with prior studies on groundwater potential and watershed prioritiza-
tion [89–94]. In Alabama, the extensive reservoir network substantially modifies natural
flow regimes and shapes regional hydrologic conditions.

To assess watershed vulnerability to streamflow, 35 watersheds were evaluated based
on three categories of factors

• Physical factors: hypsometric index and drainage density
• Dynamic factors: LULC (water, urban, forest, grassland, agriculture), and streamflow

(SF) for climate and LULC impacts
• Static factor: watershed area

Therefore, ranking was performed using Saaty’s AHP method [95,96], which assigns a
priority scale from 1 (highest) to 14 (lowest), as formalized in Equation (1).

To ensure a consistent comparison across watersheds, all input factors were normalized
by unit area using the following equations:

Water(i = 1 to 14) = Wateri/Areai;
Urban(i = 1 to 14) = Urbani/Areai;
Forest(i = 1 to 14) = Foresti/Areai;
Grass(i = 1 to 14) = Grassi/Areai;
Agriculture (i =14 to 1) = Agriculturei/Areai;
LULC change SF (i = 14 to 1) = LULC Change SFi/Areai;
Climate change SF(i = 14 to 1) = Climate change SFi/Areai.
The watershed ranking index, WRi, was calculated using a priority-based weighted

summation, as expressed in Equation (1):

WRi = (
Pi

HI (i= 14 to 1)

∑14
1 Pi

HI (i= 14 to 1)
× 14) + (

Pi
DD (i=14 to 1)

∑14
1 Pi

DD (i=14 to 1)
× 14) + (

Pi
Water (i=1 to 14)

∑14
1 Pi

Water (i=1 to 14)
× 14) + (

Pi
Urban (i=1 to 14)

∑14
1 Pi

Urban (i=14 to 1)
× 14)+

(
Pi

Forest (i=1 to 14)

∑14
1 Pi

Forest (i=14 to 1)
× 14) + (

Pi
Grass(i=1 to 14)

∑14
1 Pi

Grass (i=14 to 1)
× 14) + (

Pi
Agriculture(i=14 to 1)

∑14
1 Pi

Agriculture(i=14 to 1)
× 14)+

(
Pi

LULC change SF (i=14 to 1)

∑14
1 Pi

LULC change SF (i=14 to 1)
× 14) + (

Pi
Climate change SF (i=14 to 1)

∑14
1 Pi

Climate change SF (i=14 to 1)
× 14)

(1)

where i is the watershed index (1 to 14); Px(i) is the priority value for factor x at watershed i
(ranging from 1 to 14; 1 = highest priority); and x represents the nine factors: HI, DD, Water,
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Urban, Forest, Grass, Agriculture, LULC Change SF, and Climate Change SF. Notes: (i) For
positively correlated factors (e.g., Water, Forest), lower values are prioritized (ranking from
1 to 14). (ii) For negatively correlated factors (e.g., Agriculture, SF impacts), higher values
are prioritized (ranking from 14 to 1). (iii) The index aggregates all weighted priority scores
to produce a final watershed ranking.

WRi Range and Vulnerability Classes: WRi ranged from 1.20 to 16.80 (range = 15.60)
and was divided into five equal intervals of 3.12:

• 1.20–4.32: Very High Vulnerability
• 4.32–7.44: High Vulnerability
• 7.44–10.56: Moderate Vulnerability
• 10.56–13.68: Low Vulnerability
• 13.68–16.80: Very Low Vulnerability

Effects on Streamflow: High drainage density and hypsometric integral increase
runoff by reducing infiltration. In contrast, greater coverage of water bodies and forests de-
crease runoff by enhancing water storage and infiltration. Urbanization generally increases
runoff by reducing infiltration, thereby degrading streamflow regimes. In our prioritization
framework, this is treated as a negative impact.

Impact on Dissolved Load: Increases in streamflow driven by climate or LULC
changes negatively affect chemical transport. In Equation 1, factors that increase SF are
assigned negative values; consequently, larger negative values indicate higher vulnerability,
and the corresponding priority (p) values are reversed.

5. Results
5.1. LULC and Climatic Change Scenario

Changes in vegetation cover, temperature, precipitation patterns, and atmospheric
CO2 collectively alter both surface- and groundwater-fed hydrology [31]. Of the five land-
cover classes considered, water bodies, urban areas, and grasslands increased across all
watersheds between 1992 and 2021, whereas forest and agricultural land declined (Table S4).
Average annual rainfall ranged from 1314 to 1573 mm during 1990–2009 (Figure S2a) and
from 1290 to 1623 mm during 2010–2023 (Figure S2b), with higher totals in the northwest
that gradually decreased toward the south. The spatial difference between the two periods
(Figure S2c) shows the largest decrease in the east (~−91 mm) and the greatest increase
in the north (~+105 mm), with most areas changing within −50 to +50 mm. Overall, the
Alabama watershed exhibited signs of rainfall deficit, whereas the upper Black Warrior
watershed showed increasing rainfall over time.

5.2. Model Calibration, Validation, and Uncertainty
5.2.1. SWAT Model

SWAT results show that HRU counts varied across the baseline (LULC 1992), the
LULC-2011 and LULC-2021 cases, and the scenarios. In that order, the HRU counts were:
M1 = 108, 78, 91, 110; M2 = 107, 77, 88, 109; and M3 = 194, 139, 162, 195 (Table 2). This
variation reflects sensitivity to input-data configuration and source selection [64]. In
general, a higher number of HRUs improves spatial detail and representation of watershed
heterogeneity but increases model complexity and computational cost.

SWAT-CUP was used to calibrate the SWAT model against observed streamflow.
Several calibration–validation split strategies exist [81,97–99]; here we adopted a two-thirds
split, consistent with prior applications (e.g., Daggupati et al. [99]) for climate and land-use
change evaluations. Calibration/validation summary (text synopsis of Table S5): across
gauges and models (M1–M3), calibration skill is generally good to very good (NSE and
R2), with validation remaining satisfactory to good and only a few outliers at specific



Environments 2025, 12, 395 13 of 25

stations. KGE shows a similar pattern, and PBIAS is typically within ±15%, indicating
limited systematic bias. These results are consistent across the three basins, with expected
site-to-site variability related to reservoir influences, data gaps, and local heterogeneity.
Full station-level values are provided in Table S5 (Supplementary Materials).

Compared with prior studies at other sites, our calibration/validation results show
higher R2 and NSE than typical daily time-step performance (previous ranges: 0.40–0.80 for
R2 and 0.50–0.80 for NSE) [100] and are close to reported monthly results (0.88/0.85 for R2

and 0.85/0.84 for NSE, respectively) [101], indicating reliable model performance. The wa-
tersheds in Table S5 were selected for their complete, quality-controlled streamflow records
of sufficient length to support robust calibration/validation and to span the three basins
and major physiographic settings. Watersheds with incomplete or inconsistent records
were excluded from this summary but are included in the broader multi-model analyses.

Figure S3a–c in the Supplementary Material present the calibration and validation
plots for M1, plotted on a 2000 m3/s scale.

5.2.2. ML Model

Incorporating partially calibrated streamflow along with static and dynamic param-
eters substantially improved model performance, with most NSE values exceeding 0.85.
However, stations W13, W17, W19, and W27 showed lower NSE values (0.78, 0.66, 0.72, and
0.73, respectively; Table S5). These localized discrepancies likely reflect watershed-specific
heterogeneity and data limitations that can reduce transfer-learning efficiency. Similar
station-specific accuracy reductions have been reported for transfer-learning LSTM models
in groundwater-level simulation [33]. Figures S4a (Tombigbee River Basin) and S4b–S4c
(Black Warrior and Alabama–Tallapoosa basins) present comparative calibration, validation,
and prediction results for the ML model.

5.3. Model Sensitivity Analysis

Of the 38 parameters tested, 21 were identified as sensitive (p < 0.05) across the
calibrated watersheds using SWAT-CUP (Table S6a for M1). The most frequently sensitive
were TRNSRCH (13 watersheds), CH_N2 (10), SURLAG, ALPHA_BF, and CN2 (5 each),
GWQMN and CH_K2 (4 each), and ESCO (3). The remaining 13 parameters were sensitive
in only one or two watersheds. Overall, groundwater and channel-routing parameters
exert the strongest influence on watershed-scale hydrologic responses.

Table S6a shows that ten parameters in W27 were sensitive across four scenarios:
(a) full calibration (1993–2023), (b) calibration (1993–2009), (c) validation (2010–2023), and
(d) LULC change (1993–2023). A comparative analysis of sensitive parameters for M2
and M3 is provided in Table S6b (Supplementary Materials). The best-fit values for the
21 sensitive M1 parameters after five calibration iterations are listed in Table S7. Overall,
changes in grid size and soil-data source slightly altered the set of sensitive parameters and
their ranges, primarily due to shifts in HRU distribution and watershed area. In practice,
using higher-resolution soil data (e.g., SSURGO) is recommended to improve calibration
reliability and better capture hydrologic variability across watersheds.

We highlight W4, W13, W16, W17, W19, W26 and W27 as illustrative examples because
they exhibited the largest counts or widest ranges of sensitive parameters across scenarios;
results for all other watersheds (with fewer or less variable sensitive parameters) are fully
reported in Table S6a.

5.4. Parameter Globalization

Using average parameter values from W4 and W6 reproduced W4 reasonably well
(NSE = 0.56) but not W6 (Figure 1a). In the Black Warrior Basin, averaging parameters
from W8 (NSE = 0.54) and W16 did not transfer well to W16 (NSE = 0.43), underscoring



Environments 2025, 12, 395 14 of 25

limits to parameter transferability. By contrast, the averaging approach performed better
in the Alabama and Tallapoosa basins. Table S8 reports transfer metrics across the three
major basins.

Validity assessment for ungauged applications: the current study assessed the transfer-
ability of “globalized” parameters by benchmarking against adjacent gauged donor basins
(immediately upstream and/or downstream; see Figure 1a). For each ungauged/target
basin we (i) averaged donor parameter sets, (ii) simulated with the transferred set, and
(iii) evaluated performance using NSE, R2, KGE, and PBIAS as described in Section 4.3
for the accepted range. This procedure yielded W6 = 0.76 when averaging W4–W9,
W26 = 0.65 from W20–W31; and W27 = 0.67 from W17–W28 (Figure 1a), whereas
transfer to W16 remained weak (NSE = 0.43), reflecting reservoir and land-use hetero-
geneity. These benchmarks (see Table S5 and examples discussed above) support the
method’s use while also delineating its limits, which motivates our multi-model and
vulnerability-ranking framework.

On the magnitude of NSE under transfer: the NSE values reported in this subsection
arise from parameter-transfer tests for ungauged basins, not full calibrations; accordingly,
acceptance targets are lower than for gauged sites. We therefore judge performance using a
satisfactory band for monthly flows (≈NSE ≥ 0.50) and corroborate R2, KGE, and PBIAS.
In practice, transferred runs typically achieve ~0.50–0.65 (e.g., W6 = 0.76 when averaging
W4–W9), which is consistent with regionalization practice and sufficient for screening
and ranking in our workflow, while full calibration results remain reported elsewhere
in the paper and Supplementary Materials. The holistic scenario can be found from
Figure 1a for watershed distribution; (e.g., W4–W6–W9; W17–W23/25–W28; W20–W26–
W31); Figure S3a–c for calibration and validation; Table S7 for the calibrated BL parameter
set that is averaged/transferred in the tests; Table S5 for gauge-wise calibration/validation
metrics (NSE, R2, KGE, PBIAS) used to judge transfer performance (e.g., W6 → 0.76;
W26 → 0.65; W27 → 0.67).

5.5. Evaluation of Human and Climate Impacts

The overall workflow is shown schematically in Figure 5 (Steps 1–3) using a multi-
model approach aimed at reducing model uncertainty. Results are presented in the next
section, with a comparative summary in Figure S5 (Supplementary Materials).

5.5.1. Average Streamflow Scenarios for the First Half of the Simulation Period (1993 to
2009): BL vs. LULC Models

• BL Model

Across all three basins, streamflow estimates from M1, M2, and M3 showed some
variability in response to climatic changes. The Tombigbee Basin exhibited moderate varia-
tion in watersheds W6 and W31, likely reflecting their reservoir influence and geomorphic
setting. In contrast, Black Warrior and Alabama Basins remained relatively consistent
across models, with minor differences (Table 3). These results suggest that the Tombigbee
Basin is more sensitive to climate variability than the Black Warrior and Alabama Basins.

• LULC Change Model

Model outputs revealed more pronounced variability in streamflow across all water-
sheds, particularly in the Tombigbee Basin. Comparisons among M1, M2, and M3 showed
that LULC evolution amplified streamflow differences in certain sub-basins (e.g., W31 and
W28), while others remained relatively stable. Detailed results are provided in Table 3.
These findings highlight that LULC change exerts a stronger influence on streamflow vari-
ability than climate alone in some basins, implying the need to integrate land-use planning
into watershed management strategies.
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Table 3. Comparison of observed and simulated streamflow (SF) for two periods to assess the impacts
of LULC and climate variability.

Basin Watershed
No. Periods OBS SF

(m3/s)

BL LULC Related
Rainfall
(mm)M1

(m3/s)
M2

(m3/s)
M3

(m3/s)
M1

(m3/s)
M2

(m3/s)
M3

(m3/s)

Tombigbee
Basin

4
1993–2010 Avg. 55 57 50 57 56 53 57 120
2010–2022 Avg. 50 61 54 61 84 53 83 123

Total Avg. 52 59 52 59 70 53 70 122

6
1993–2010 Avg. 112 122 110 117 124 116 127 111
2010–2022 Avg. 104 111 99 107 96 69 79 116

Total Avg. 108 116 104 112 110 92 103 113

9
1993–2010 Avg. 208 220 220 220 243 228 243 117
2010–2022 Avg. 161 193 193 193 155 152 155 112

Total Avg. 184 206 206 206 199 190 199 115

19
1993–2010 Avg. 48 59 53 55 62 60 62 115
2010–2022 Avg. 52 60 54 56 33 47 48 121

Total Avg. 50 59 53 55 47 53 55 118

20
1993–2010 Avg. 320 340 351 353 389 368 356 111
2010–2022 Avg. 300 341 352 354 286 301 334 112

Total Avg. 310 340 352 354 337 335 345 112

31
1993–2010 Avg. 791 953 791 893 1077 948 932 113
2010–2022 Avg. 864 1010 864 944 809 1005 930 110

Total Avg. 828 981 828 919 943 977 931 111

Black
Warrior
Basin

8
1993–2010 Avg. 85 87 89 86 83 89 73 120
2010–2022 Avg. 96 99 99 97 101 90 143 121

Total Avg. 91 93 94 92 92 89 108 120

16
1993–2010 Avg. 229 252 247 256 291 291 252 119
2010–2022 Avg. 245 284 278 290 225 189 327 119

Total Avg. 237 268 262 273 258 240 290 119

26
1993–2010 Avg. 703 776 785 771 861 839 771 109
2010–2022 Avg. 659 779 789 770 629 660 783 108

Total Avg. 681 777 787 770 745 749 777 108

Tallapoosa
and

Alabama
Basin

13
1993–2010 Avg. 70 74 73 75 75 81 81 111
2010–2022 Avg. 71 76 74 76 71 46 61 117

Total Avg. 71 75 74 75 73 64 71 114

17
1993–2010 Avg. 90 84 84 93 85 85 85 117
2010–2022 Avg. 81 87 87 95 76 46 76 120

Total Avg. 86 85 85 94 80 66 80 119

27
1993–2010 Avg. 167 166 177 165 179 177 186 120
2010–2022 Avg. 175 168 180 167 149 79 116 123

Total Avg. 171 167 178 166 164 128 151 122

28
1993–2010 Avg. 571 703 701 680 779 808 793 124
2010–2022 Avg. 668 743 742 720 584 543 575 119

Total Avg. 620 723 722 700 682 676 684 121

32
1993–2010 Avg. 817 831 833 832 978 1065 889 120
2010–2022 Avg. 830 843 845 841 736 612 882 117

Total Avg. 824 837 839 837 857 839 885 118

5.5.2. Average Streamflow Scenarios for the Second Half of the Simulation Period
(2010–2023): BL and LULC Models

• BL model

In the Tombigbee Basin, M1 and M3 produced similar streamflow values, whereas
M2 estimated slightly lower flows for most watersheds. In the Black Warrior Basin, results
were consistent between M1 and M2, while greater variability was observed in M3. For
the Alabama Basin, flow patterns were largely comparable across models, with only minor
differences in magnitude. Overall, M2 tended to underestimate flows, while M3 exhibited
greater variability, highlighting differences in model sensitivity to climatic inputs.

• LULC Change Model

When LULC changes were incorporated, streamflow variability increased across all
basins. In the Tombigbee Basin, M1 predicted the highest flows in several watersheds,
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while M2 and M3 produced moderate to lower responses. In the Black Warrior Basin,
notable differences emerged among models, particularly for M3. In the Alabama Basin,
LULC changes resulted in pronounced shifts in streamflow values, especially under M2
and M3. Detailed streamflow values for all watersheds and models are provided in Table 3.
Compared with the BL model results (fixed 1992 LULC), these findings demonstrate that
LULC change introduces substantially greater variability among models than climate
variability alone.

Therefore, average streamflow scenarios for both time-series halves highlights the
role of land-use dynamics in watershed assessments and their influence on subsequent
watershed vulnerability rankings.

Detailed streamflow values for all watersheds and models are presented in Table 3.

5.5.3. Average Rainfall Patterns in the Two Simulation Periods

In the Tombigbee Basin, average rainfall for 1990–2009 and 2010–2023 was assessed.
Most watersheds showed modest increases between the two periods; only W9 declined
(−5 mm). The corresponding watershed areas from W4 to W31 are 80, 2670, 5890, 3078,
4459, and 7877 km2 (Table 3).

In the Black Warrior Basin, Table 3 summarizes average rainfall for the two periods
(1990–2009 and 2010–2023). W8 and W26 declined by 10 mm and 1 mm, respectively, and
the basin shows a slight downward trend overall. Watershed areas in this basin are 2556,
1170, and 2363 km2.

In the Alabama and Tallapoosa Basins, W13 and W28 experienced reductions of 3 mm
and 5 mm, respectively. Overall, the basins showed mixed but relatively modest changes,
with slight decreases in some watersheds offset by small increases in others. The watershed
areas considered in this basin are 3764, 1558, 3512, 928, and 2190 km2.

Compared with the clearer increases observed in the Tombigbee Basin and the declines
in the Black Warrior Basin, these results suggest that rainfall variability in the Alabama
and Tallapoosa Basins has been more balanced and less directional. Consequently, stream-
flow responses in these basins are likely to remain relatively stable, with localized effects
depending on watershed-specific conditions. Additionally, the Black Warrior Basin ex-
hibits reduced inputs and heightened hydrologic stress. Overall, these results show that
long-term rainfall trends and short-term averages do not always align, underscoring the
complexity of climate–basin interactions.

5.5.4. Climate Variability Impact on Runoff

Table 4 shows the climate change and human impacted SF result. These results indicate
that climate-driven streamflow responses revealed distinct spatial patterns. The Tombigbee
Basin showed moderate variability, with certain watersheds more sensitive to rainfall
changes. The Black Warrior Basin exhibited generally consistent increases across models,
with only minor divergence. The Alabama Basin showed more uneven responses, with
one watershed experiencing a large increase while most others showed small changes.
Collectively, these findings underscore basin-specific sensitivities to climate variability,
shaped by reservoir influence, land use, and geomorphic setting. These climate-only results
provide a foundation for comparison with the subsequent LULC impact analysis, which
further isolates the role of land-use change in shaping watershed responses.

Compared with climate-driven impacts, LULC changes exerted stronger and more
spatially variable influences on streamflow across the three basins. While upstream wa-
tersheds showed relatively consistent behavior, downstream systems—particularly those
with reservoirs or extensive land-use modifications—exhibited greater divergence among
models. These results show the importance of accounting for human activities in watershed
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assessments, as their impacts on runoff often exceed those of climate variability alone. To
better quantify these differences, Section 5.7 below develops a watershed vulnerability
ranking framework that integrates physical, static, and dynamic factors.

Table 4. LULC change and climate-related impacts on streamflow across 14 watersheds.

Watershed Name W No.
LULC Changed SF (m3/s): 2010 to 2023 Climate Variability SF (m3/s): 1994 to 2023

M1 M2 M3 M1 M2 M3

Tombigbee Basin

4 23 −1 23 4 4 4

6 −15 −31 −28 −10 −10 −10

9 −37 −41 −38 −28 −28 −27

19 −27 −8 −8 1 2 1

20 −55 −51 −21 1 1 1

31 −201 141 −13 57 73 50

Black Warrior Basin

8 3 −9 46 11 10 11

16 −59 −88 38 32 31 34

26 −150 −129 13 3 4 −1

Alabama and Tallapoosa Basin

13 −4 −29 −15 1 1 1

17 −11 −41 −20 2 2 3

27 −18 −101 −51 2 3 2

28 −159 −199 −145 41 41 39

32 −107 −234 40 11 13 9

5.6. Relationship Between Climate Change and Human Intervention (LULC Change)

Across all three basins, LULC change emerged as the dominant driver of streamflow
variability, though the degree of influence varied among models. Climate variability played
a secondary role, except in isolated cases within the Black Warrior Basin. The Alabama
Basin showed the strongest dominance of LULC impacts, whereas the Black Warrior Basin
exhibited the greatest relative sensitivity to climate variability. A detailed summary of
proportional impacts is provided in Table S9 (Supplementary Materials, which summarizes
cross-watershed sensitivity outcomes based on this SUFI-2 (p < 0.05, higher |t|) criterion).
For dominance criterion, this study labels watershed impacts as LULC-dominated when
the LULC contribution exceeds 60% in ≥2 of 3 models (M1–M3); Climate-dominated when
the climate contribution exceeds 60% in ≥2 of 3 models; and Both when neither factor
consistently exceeds 60% across models (i.e., mixed or model-dependent dominance). For
model-agreement criterion, the inter-model agreement is classified as strong when the inter-
model range of percentage contributions (M1–M3) is ≤15 percentage points (pp), moderate
when it is >15–30 pp, and weak when it is >30 pp. This provides a consistent, quantitative
basis for labeling agreement across models. These basin-level contrasts are directly reflected
in the watershed vulnerability ranking results presented in the following section, which
integrates physical, dynamic, and static factors to provide a comprehensive assessment.

5.7. Watershed Ranking (WR) Based on Impact

WR calculations indicate that streamflow—affected by static, dynamic, and human–climatic
factors—exhibits mostly moderate vulnerability in its responses (Table 5).

A parallel assessment using a 1–7 scale with 0.5 intervals produced consistent results,
confirming the robustness of the watershed priority ranking. The agreement between the
two scales also indicates that the weighting approach within the AHP framework produced
reliable results. Table 5 reports watershed-level vulnerability/priority scores computed
with the AHP-weighted index (Equation (1)). Scores are shown on two equivalent scales
(1–14 and 1–7 = ½ × [1–14]).
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Table 5. Ranking of watershed vulnerability to human intervention and climate change. Includes
both 1–14 and 1–7 scales (1–7 = ½ × [1–14]); lower score = higher vulnerability. Severity thresholds
(1–14 scale): High ≤ 6.5, Moderate > 6.5–10.5, Low > 10.5..

Watershed No. Priority for 1 to 14 Scale Priority for 1 to 7 Scale Severity

4 6.13 3.07 High

6 6.40 3.20 High

28 7.60 3.80 Moderate

16 7.73 3.87 Moderate

26 7.73 3.87 Moderate

9 8.27 4.13 Moderate

27 8.53 4.27 Moderate

19 9.20 4.60 Moderate

8 9.60 4.80 Moderate

20 9.60 4.80 Moderate

32 10.13 5.07 Moderate

31 11.33 5.67 Low

13 11.73 5.87 Low

17 12.00 6.00 Low

Interpretation of rankings: W4 and W6 ranked highest due to a combination of
high drainage density, low hypsometric integral, and sensitivity to both climate variabil-
ity and LULC change, making them particularly prone to rapid runoff responses. The
moderate group includes watersheds where impacts were more mixed, often reflecting
intermediate basin sizes or partial buffering by reservoirs. In contrast, watersheds classified
as low vulnerability (e.g., W13, W17, W31) tend to have larger storage capacity, gentler
slopes, or hydrological stability that reduces their sensitivity to short-term climatic and
land-use fluctuations.

Management implications: These rankings provide a decision-support tool for priori-
tizing resource allocation. Watersheds in the high-vulnerability category (W4, W6) may
require immediate attention for adaptive management, such as targeted land-use planning,
reservoir operation strategies, or improved monitoring. Moderate-vulnerability water-
sheds could benefit from proactive measures to prevent escalation, while low-vulnerability
systems can serve as comparative baselines for resilience studies.

6. Discussion
This study advances understanding of how human interventions and climate variabil-

ity jointly influence watershed hydrology [84]. Climate variability associated with global
warming alters rainfall patterns and, in turn, runoff dynamics. LULC change also exerts
significant influence, with waterbody areas increasing across most watersheds—likely
reflecting urban expansion that requires water storage [102] and agricultural water use.
This study quantifies climate vs. LULC contributions via process-based counterfactuals (BL
holds LULC fixed; LULC scenarios hold the climate period constant), which provides direct
identification without assuming linear additivity. Standardized multiple regression is not
used here, because monthly streamflow is nonlinear, autocorrelated, and reservoir-affected,
and climate and LULC co-vary in space and time-conditions under which standardized
partial coefficients can be unstable or misleading. Instead, we rely on (i) scenario contrasts
summarized in Table S9, (ii) global sensitivity with SUFI-2 for SWAT parameters, and
(iii) ML input checks (ablation/permutation), which better respect hydrologic process
structure while yielding consistent conclusions about relative influence.
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Model performance and sensitivity. Calibration results showed strong performance
across most watersheds. For example, W8 achieved an NSE of 0.90 for the full simulation
period (Table S5a), with 0.91 for 1993–2009 but a decline to 0.27 for 2010–2023. By contrast,
M3 achieved an NSE of 0.96 (Table S5b), likely due to differences in grid resolution and
input datasets (e.g., weather and LULC rasters), which affect streamflow representation and
parameter sensitivity [101]. Other contributing factors may include missing observations or
choices of raster ranges such as slope intervals and HRU definitions (Section 4.1). The main
sensitive parameters included TRNSRCH, CH_N2, SURLAG, ALPHA_BF, CN2, GWQMN,
CH_K2, and ESCO. Their hydrological roles are summarized as follows:

• TRNSRCH: Governs seepage from the streambed to groundwater; higher values
increase losses, especially in permeable zones.

• CH_N2: Controls the main channel velocity via Manning’s roughness; higher values
simulate slower flow.

• SURLAG: Surface runoff lag time; lower values accelerate runoff response and ad-
vance peak-flow timing.

• ALPHA_BF: Baseflow response factor; lower values delay groundwater contributions.
• CN2: Curve number for runoff; higher values (urban areas) increase runoff, lower

values (forests) enhance infiltration.
• GWQMN: Threshold aquifer water depth for baseflow; larger values delay baseflow onset.
• CH_K2: Channel seepage rate into aquifers; higher values increase infiltration losses.
• ESCO: Soil evaporation compensation factor; lower values allow deeper evaporation,

altering soil moisture dynamics.

Heterogeneity and parameter globalization. The study area is highly heteroge-
neous, and average parameters did not adequately capture behavior across all watersheds
(Section 5.4). Nonetheless, parameter globalization performed reasonably well in some
downstream watersheds located close together, sometimes just one basin apart. Variability
likely reflects lithological differences and complex topography, as the region lies within the
southern Appalachian Mountains (Section 2).

Climate vs. LULC impacts. Streamflow responses to climate scenarios were consistent
across models, largely due to uniform weather inputs and a fixed LULC map. By contrast,
streamflow under human intervention scenarios varied significantly, primarily driven by
differences in HRU counts (Section 5.2.1). Both climate and LULC change [103] affected
streamflow across the two time periods, linked to altered rainfall patterns, expansion of
water bodies, and declines in forest and grassland cover—all of which increase erosion and
reduce the land’s ability to retain runoff (Section 5.5). Because of these diverse LULC–soil
combinations, HRU counts varied among sub-models, producing deviations in human-
induced scenarios and confirming findings of prior studies [64,84]. The interaction between
climate variability and human intervention impacts was further detailed in Section 5.6.

Implications. Integrating static, dynamic, and anthropogenic factors demonstrates
that the models produced reliable results. Importantly, the watershed rankings (Section 5.7)
capture these combined influences, highlighting vulnerable watersheds where runoff
management is critical. The findings provide a decision-support framework for streamflow
management strategies aimed at reducing pollutant transport from upland areas and
improving resilience under changing climate and land-use conditions.

LSTM: Integrating the physics-informed LSTM with partially calibrated SWAT outputs
improved skill at most gauges (NSE > 0.85) and reduced peak-flow bias by better capturing
temporal dependencies in the rainfall–runoff signal; only a few sites (e.g., W13, W17, W19,
W27) showed smaller gains, likely due to local heterogeneity and data gaps.

Comparison with previous studies. Previous hydrological research in Alabama and
the broader southeastern U.S. has generally examined either climate variability or land-use
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change in isolation, but rarely their combined impacts. For example, Gurung et al. [25]
and Haas et al. [26] focused on uncontrolled watersheds. Our findings extend this body
of work by systematically assessing both controlled and uncontrolled watersheds across
three major basins in Alabama using a multi-model SWAT framework. By integrating
process-based modeling with machine learning, the study improves predictive accuracy
and highlights how basin-specific characteristics—such as lithology, reservoir presence,
and LULC transitions—mediate hydrological responses. The watershed vulnerability
ranking framework further advances prior approaches by offering a transferable method
for prioritizing watershed management in data-scarce, human-modified regions.

7. Conclusions
This study applied an integrated hydrological modeling framework to evaluate water-

shed behavior and streamflow dynamics in Alabama under both climatic variability and
land-use change. Using ArcSWAT with three multi-scale models (M1–M3), streamflow
was simulated under baseline and LULC change scenarios from 1993 to 2023, with strong
calibration performance (NSE = 0.91 for W4 in M1). Integration with an LSTM-based
machine learning model further improved predictive accuracy, particularly under partially
calibrated conditions. The findings provide practical insights for sustainable watershed
management, water security, and ecosystem service protection, while also informing envi-
ronmental policy in line with SDG (Sustainable Develipment Goals) 6 (Clean Water and
Sanitation) and SDG 13 (Climate Action). Major findings of this study include:

(1) Drainage density generally exceeded 0.6 km/km2, and hypsometric integral val-
ues were relatively high, although 10 of 35 watersheds had HI < 0.3, indicating spatial
heterogeneity in erosional maturity.

(2) Rainfall trends revealed increasing climate variability and drought severity. Ten
watersheds exhibited upward rainfall trends, while others declined. Three major droughts
(1999–2003, 2006–2009, 2011–2013) were identified using SPI, with NASA POWER rainfall
data showing good agreement with USGS records (r ≈ 0.7).

(3) LULC changes (1992–2021) were marked by increases in waterbody, urban,
and grassland areas and declines in forest and agricultural land, driving shifts in
streamflow behavior.

(4) Soil data resolution strongly influenced HRU generation and streamflow results: 18 FAO
soil classes and 5125 SSURGO soil classes produced notable differences across models.

(5) Sensitivity analysis identified 21 main parameters (out of 38), with routing
(e.g., CH_N2), groundwater (e.g., ALPHA_BF, GWQMN), management (e.g., CN2), and
HRU parameters (e.g., SURLAG) exerting the greatest influence on streamflow.

(6) Climate variability led to streamflow increases in most watersheds, except W6 and
W9 (Tombigbee) and W26 (Black Warrior), which showed declines despite rainfall stability.

(7) LULC change exerted stronger and more spatially variable effects than climate
alone, particularly in downstream watersheds influenced by reservoirs and land-use tran-
sitions. These findings show the importance of incorporating land-use dynamics into
watershed assessments, as their impacts often outweigh those of climate variability when
anthropogenic activities are considered.

(8) Vulnerability rankings classified W4 and W6 as highly vulnerable; ten watersheds
as moderately vulnerable; and three as low vulnerability, reflecting greater resilience.

(9) Basin-level contrasts showed moderate climate sensitivity in the Tombigbee Basin,
higher climate influence in parts of the Black Warrior Basin, and LULC-dominated impacts
in the Alabama Basin.
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(10) The SWAT–LSTM fusion consistently outperformed SWAT-only baselines, deliver-
ing higher NSE under partially calibrated conditions and more reliable peak-flow reproduc-
tion across heterogeneous basins, thereby improving predictive accuracy and robustness.

Overall, the results demonstrate that LULC change is the dominant driver of hydrolog-
ical variability across Alabama, frequently outweighing climate effects. The integration of
process-based SWAT modeling with machine learning enhances predictive robustness and
captures basin-specific sensitivities shaped by lithology, reservoir operations, and land-use
transitions. The proposed watershed vulnerability ranking framework offers a transferable
decision-support tool for prioritizing management in data-scarce, human-modified regions.
Collectively, these findings underscore the growing vulnerability of Alabama’s river basins
to combined climatic and anthropogenic pressures and highlight the need for proactive
watershed and environmental management to sustain water resources, protect ecosystem
services, and guide long-term policy.
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